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ABSTRACT

A Brain-Computer Interface (BCI) is a specific type of
human-computer interface that enables the direct com-
munication between human and computers by analyzing
brain activity. Oddball paradigms are used in BCI to
generate event-related potentials (ERPs), like the P300
wave, on targets selected by the user. This paper deals
with the choice of a reduced set of sensors for the P300
speller. A low number of sensors allows decreasing the
time for preparing the subject, the cost of a BCI and the
P300 classifier performance. A new algorithm to select
relevant sensors is proposed, it is based on the backward
elimination with a cost function related to the signal to
signal-plus-noise ratio. This cost function offers bet-
ter performance and avoids further mining evaluations
related to the P300 recognition rate or the character
recognition rate of the speller. The proposed method is
tested on data recorded on 20 subjects.

1. INTRODUCTION

A Brain-computer interface (BCI) is a direct commu-
nication pathway between a human brain and an ex-
ternal device. Such systems allow people to commu-
nicate through direct measurements of brain activity,
without requiring muscular movement [3]. BCIs may be
the only means of communication for people who are
affected by severe motor disabilities like spinal cord in-
juries and amyotrophic lateral sclerosis (ALS) [4]. Pat-
tern recognition and signal processing techniques are
used for the classification and the detection of specific
brain responses. Most of the effective solutions use ma-
chine learning models [10, 13]. Whereas neuroscience
knowledge guides the detection of expected signals, ma-
chine learning techniques allow modeling the signal vari-
ability over time and over subjects. One current chal-
lenge in the BCI community is to find an optimal set of
sensors for a specific subject and paradigm. The choice
of a reduced set of sensors decreases the time for prepar-
ing the subject/patient, the cost of a BCI, but it can
also improve the performance of the classifier by select-
ing a reduced and better set of input features. Several
strategies exist for selecting a sensor subset. First, it is
possible to select sensors based on prior knowledge from
previous experiments. In such case, the choice of the
sensors is fixed and may be an issue for some subjects as
the sensor subset varies across subjects [8]. Indeed, it is
better to personalize the sensor subset in relation to the
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user. For a set with N sensors, there exist 2N candidate
subsets. We distinguish three main ways for searching
the best subset: complete, random and sequential. The
complete search is usually intractable as the search space
grows exponentially. The random search starts with a
randomly selected subset and add randomness in the se-
quential approach or it generates new random subsets,
like the Las Vegas algorithm [1]. The sequential search
does not guarantee optimality. Several variations are
described in the literature, like the greedy hill-climbing
approach, the forward selection, backward elimination,
and bi-directional selection.

In this paper, we will consider the backward elimina-
tion. The problem that we address in this paper is how
to find an efficient criterion for removing the less rele-
vant sensors, i.e. how to evaluate the relevance of a par-
ticular sensor subset. The consequences of the selected
sensors should be then evaluated in the P300 speller.
The paper is organized as follows. The P300 speller is
presented in the second section. The sensor selection
strategy is explained in the third section. The different
criteria for the sensor evaluation are given in the fourth
section. Section five is dedicated to the proposed meth-
ods. Data and the protocol experiment are detailed in
the sixth section. Finally, the performance of the sensor
selection is discussed in the last section.

2. P300 SPELLER

A P300 speller allows people to write characters (let-
ters, digits, symbols) on a computer screen. Oddball
paradigms are used in BCI to generate event-related po-
tentials (ERPs), like the P300 wave, on targets selected
by the user. A P300 speller is based on this principle [6].
A 6× 6 matrix containing all the available characters is
presented to the user on a computer screen. To spell a
character, the user has to focus on the character s/he
wants to spell. When the user focuses on a cell of the
matrix, it is possible to detect a P300 (a positive de-
flection in voltage at a latency of about 300 ms in the
EEG) after the cell has been intensified. To generate
ERPs, the row and columns are intensified randomly.
Row/column intensifications are block randomized in
blocks of 12 (6 rows and 6 columns). The sets of 12
intensifications is repeated Nepoch times for each charac-
ter. Therefore, 2Nepoch possible P300 responses should
be detected for the recognition of one character.

A P300 speller is composed of two steps, each one
being a classification problem. The first classification
step is to detect the presence of a P300 in the electroen-



cephalogram (EEG). The second one corresponds to the
combination of a minimum of two P300 responses for de-
termining the right character to spell (one row and one
column). These two steps are sequential. The detection
of P300 responses corresponds to a binary classification:
one class represents signals that correspond to a P300
wave, the second class is the opposite. The timing of the
flashing lights provide the triggers for the P300, which
depends on the user. Although a P300 response can be
expected at one particular latency, it is possible that
the user does not produce a P300 response at the right
moment as many artifacts can occur. In the character
recognition step, the outputs of the P300 classification
are combined to classify the main classes of the applica-
tion (characters). In the oddball paradigm, a character
is defined by a couple (row,column). The flashing lights
are on each row and column and not on each charac-
ter. The character is supposed to correspond to the
intersection of the accumulation of several P300 waves.
The best accumulation of P300 waves for the horizontal
(resp. vertical) flashing lights determines the row (resp.
the column) of the desired character.

We note V ∈ R12×Nepoch the matrix containing the
cumulated probabilities of the P300 detection for each
of the 12 flashes and for each epoch.

V (i, j) =

j∑
k=1

EP300(P (i, k)) (1)

where P (i, j) ∈ RNf×Ne is the pattern at the epoch
j corresponding to the subject response for the flash i,
(i, j) ∈ {1, . . . , 12}×{1, . . . , Nepoch}. Nf and Ne are the
number of sensors and the number of sampling points
representing the signal, respectively. EP300 is a classi-
fier that returns a confidence value v ∈ [1; 0]: 1 (resp.
0) denotes a perfect confidence that P300 response is
detected (resp. not detected).

At each epoch j, it is possible to evaluate the coor-
dinate (xj , yj) of the selected character by:

xj = argmax
1≤i≤6

V (i, j) (2)

yj = argmax
7≤i≤12

V (i, j). (3)

We denote by ESpeller({P (1, Nepoch), . . . , P (12, Nepoch)}) =
(row, column), the selected character.

3. SENSOR SELECTION

3.1 Backward elimination

The chosen method for adaptively selecting relevant sen-
sors is based on the backward elimination. It involves
starting with all candidate variables and testing them
one by one for their significance, deleting those that are
not significant. At each iteration of the algorithm, each
of the Ns remaining sensors is removed one by one, the
subset of Ns−1 remaining sensors are tested and Ns per-
formance scores are given. By choosing the subset with
the highest score, the less relevant sensor is eliminated.
A subset with a high score means that the removed sen-
sor has a low impact on the performance score. In this

(a) Graphical User Interface (b) P300 evoked potentials

Figure 1: P300-BCI Speller. Fig. 1(a): Screen display,
Fig. 1(b): Average P300 response on Cz

work, we eliminate the two worst sensors at each step of
the algorithm, i.e. the sensors corresponding to the two
subsets with the highest score. This iteration procedure
is continued until two sensors only are left. The method
leads us to rank the relevance of each sensor: a relevant
sensor is never eliminated whereas a useless sensor is
eliminated during the first steps of the algorithm. The
rank of a sensor is defined by Ns/2 − i where i is the
iteration where the sensor was removed.

3.2 Subset evaluation

Two types of criterion can be used for evaluating a sub-
set. First, independent criteria aim at evaluating the
goodness of a feature or a set of features by consider-
ing the underlying characteristics without involving any
classification algorithm. For instance, independent cri-
teria can be based on information measures, distance
measures, dependency measures, and consistency mea-
sures [2]. Second, a dependency criterion requires a
predetermined mining algorithm in feature selection. It
uses the performance of the mining algorithm applied on
the selected subset to determine which features are se-
lected. In a classification problem, the accuracy is often
used as a dependent criterion for feature selection. As
features are selected by the classifier that will use these
same selected features for classifying unseen signals, this
strategy usually provides better performance as it finds
features that are better suited to the task. However,
such method tends to be more computationally expen-
sive as they require training and testing models (with
a K-fold cross validation to overcome overfitting). In
a P300 speller, three main criteria can be used for the
subset evaluation: the evaluation of the EEG signal,
the recognition of the P300 responses (EP300) and the
evaluation of the speller, i.e. the application (ESpeller).
Besides, the classification of the P300 can include a pre-
processing steps for creating spatial filters (SF).

The criteria that are used during the backward elim-
ination as a function for selecting the best subsets are
resumed in Table 1. These criteria can be viewed as
three basic criteria applied without (C1, C2, C3) or
with (C4, C5, C6) spatial filtering as preprocessing. C1
and C4 correspond to the signal to signal-plus-noise ra-
tio (SSNR), which can be directly compared from sig-
nal properties. The other criteria needs classification
results. It requires the classification of the P300 re-
sponses with EP300 (C2 and C5) or the complete char-
acter recognition steps with EP300 and ESpeller (C3 and



C1: SSNR
C2: EP300

C3: EP300 + ESpeller

C4: SF + SSNR
C5: SF + EP300

C6: SF + EP300 + ESpeller

Table 1: The criteria for evaluating sensor subsets.

C6). For C2 and C5, the criterion represents the recog-
nition rate of the P300 speller that is defined as the
average recognition rate over every epoch. For C3 and
C6, it represents the recognition rate of character for
the P300 speller. It is worth mentioning that ESpeller

requires EP300. The more steps are added, the more the
method gets computationally expensive. The goal here
is to identify the best criterion, to analyze the impact of
spatial filtering and if the performance is related to the
number of processing steps.

4. METHODS

This section is dedicated to the methods that were used
for creating the spatial filters, evaluating the SSNR and
classifying the P300 responses.

4.1 Spatial filters

For the evaluation of the EEG signal we consider the
xDAWN algorithm that is fully described in [15, 14].
This method is based on two main hypotheses. First,
there exists a typical response synchronized with the
target stimuli superimposed with an evoked response
by all the stimuli (target and non-target). Second, the
evoked responses to target stimuli could be enhanced
by spatial filtering. We consider an analytical model of
the recorded signals X that is composed of three parts:
the P300 responses (D1A1), a response related to every
superimposed evoked potentials (D2A2) and the residual
noise (N)

X = D1A1 + D2A2 + N. (4)

where X ∈ RNt×Ns , Nt and Ns are the number of sam-
pling points over time and the number of sensors, re-
spectively. D1 and D2 are two real Toeplitz matrices
of size Nt × N1 and Nt × N2 respectively. D1 has its
first column elements set to zero except for those that
correspond to a target. For D2, its first column ele-
ments set to zero except for those that correspond to
stimuli onsets. N1 and N2 are the number of sampling
points representing the target (the P300 response) and
superimposed evoked potentials, respectively. N is a
real matrix of size Nt ×Ns.

By applying spatial filters U1 ∈ RNs×Nf , the goal is
to enhance the signal to signal-plus-noise ratio (SSNR)
of the enhanced P300 responses (D1A1U1), where Nf is
the number of spatial filters

XU1 = D1A1U1 + D2A2U1 + NU1. (5)

We define the SSNR in relation to the spatial filters
by:

SSNR(U1) =
Tr(UT

1 ÂT
1 D

T
1 D1Â1U1)

Tr(UT
1 XTXU1)

(6)

where Â corresponds to the least mean square estima-
tion of A1.

The SSNR is maximized by:

Û = argmax
U1

SSNR(U1). (7)

In the definition of the SSNR, we replace Â1 by BT
1 X

where BT
1 is a part of the least mean square estimation.

Then, we apply a QR decomposition on D1 = Q1R1 and
X = QxRx. Finally, one can express Eq. (6) as:

SSNR(V1) =
Tr(V T

1 (QT
xB1R

T
1 R1B

T
1 Qx)V1)

Tr(V T
1 V1)

, (8)

where V1 = RxU1. V1 is therefore obtained from the
Rayleigh quotient, whose solution is the concatenation
of Nf eigenvectors associated with the Nf largest eigen-
values of QT

xB1R
T
1 R1B

T
1 Qx [7]. These vectors are esti-

mated thanks to a singular value decomposition (SVD)
of R1B

T
1 Qx = ΦΛΨT , Φ and Ψ being two unitary matri-

ces and Λ is a diagonal matrix with nonnegative diagonal
elements in decreasing order.

The solution of Eq. (7) provides the spatial filters,
which are ordered in decreasing order by relevance im-
pact.

Û1 = R−1
x Ψ (9)

4.2 SSNR

The evaluation of the SSNR depends on the application
of the spatial filters. If the spatial filters are used, it is
possible to directly obtain the SSNR thanks to Eq. (7).
Indeed we have after simplification:

SSNR(V1) =
Tr(V T

1 (ΨΛ2ΨT )V1)

Tr(V T
1 V1)

. (10)

By considering again the Rayleigh quotient for V1, the
associated solution corresponds to the Nf largest eigen-
values of ΨΛ2ΨT , which are Λ2. In addition, the de-
nominator can be easily simplified to the trace of the
identity of size Nf ×Nf , as Ψ and Qx are unitary ma-
trices. Therefore, the SSNR of the enhanced signal, i.e.
after spatial filtering, can be defined by:

SSNR = Tr(Λ2)/Nf . (11)

When spatial filters are not used for the evaluation
of the SSNR, the SSNR shall be calculated directly by
replacing U1 by the identity I:

SSNR =
Tr(ÂT

1 D
T
1 D1Â1)

Tr(XTX)
(12)

4.3 Classifier

For the binary classification of P300 and no P300 re-
sponses, we consider the Bayesian linear discriminant
analysis (BLDA) [12]. This classifier has been proved
efficient, it is fast to train and does not require hyper-
parameters to adjust [8]. It finds a discriminant vector
w such that the distance between the associated vector



of a class c and wT p is minimized when the input vec-
tor p belongs to the class c. The vector p is obtained by
the concatenation of the different time-course signals.
For the classification, only the four first components of
the enhanced signal are considered (Nf = 4 if Ns ≥ 4,
Nf = Ns otherwise). This classifier is used for EP300.

5. DATA AND PROTOCOL EXPERIMENT

5.1 Data acquisition

The EEG signal was recorded on 20 healthy subjects
(average age=26 ,standard deviation=5.7) [11]. For
testing the different subset evaluations methods, we con-
sider two sessions: one for training the classifier, the
other for testing. For the training and test sessions, the
subject had to write 50 and 60 characters respectively.
Each row and column in the spelling matrix was ran-
domly intensified for 100ms. The delay between two
consecutive intensifications was 70ms for the training
(resp. 130ms for the test), leading to an interstimulus
interval (ISI) of 170ms for the training session (resp.
230ms for the test). For each symbol, the number of
epochs was 10 (Nepoch = 10).

5.2 Pre-processing

The EEG signals are sampled at 100Hz. Before process-
ing the data, they were first filtered by bandpass filter
with cut-off frequencies at 1Hz and 20Hz. The signal
was then down sampled to obtain 25 sampling points
per second. For each sensor, the signals were then nor-
malized as to have a zero mean and standard deviation
equal to one.

Although the spatial filters and the classifier can be
used independently as a cost function during the back-
ward elimination, we always use spatial filters for en-
hancing the signals before training the classifier once
the sensor subset are defined. Indeed, this method has
been shown efficient in previous works [15, 14].

6. RESULTS

Figure 2 presents the accuracy on the test database for
each subset evaluation method and for different sizes of
subset. The selection methods that do not consider the
spatial filters (C1, C2 and C3) provide the worst results
(between 66.42% and 89.58% for a subset of eight sen-
sors). With eight sensors, the average recognition rate
of the speller is 94.92%, 94.00% and 93.00% for the se-
lection with C4, C5 and C6 respectively. These results
suggest that eight sensors suffice and provide good re-
sults. With 32 sensors, the recognition rate of the speller
is 95.83%. From 8 to 32 sensors, the gain in peformance
is less than 1%, showing the relevance of the method
for sensor selection. For eight sensors, the impact of the
spatial filters in the sensor subset evaluation is 5.34%,
11.25% and 26.58% for C4, C5 and C6 respectively, sug-
gesting that the criterion based on the SSNR is less de-
pendant to the spatial filters. It also proves that spatial
filtering has a critical impact on the selection of suitable
sensors. Finally, C4 is sufficient for creating suboptimal
sets of sensors. This criterion based of SF+SSNR can
be done in one step thanks to the xDAWN algorithm. It
avoids considering further steps like the EP300 and/or

ESpeller, which increase the complexity of the sensor se-
lection procedure and provide less relevant sensors.
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Figure 2: Accuracy of the P300 speller in relation to the
number of selected sensors, after 10 epochs.

The accuracy of the P300 speller in relation to the
number of epochs is presented in Fig. 3. While the per-
formance naturally decreases in relation to the number
of epochs, the accuracy remains acceptable till about
five epochs. The best performance are always produced
with C4 and C5.
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Figure 3: Accuracy of the P300 speller in relation to the
number of epochs, for 8 selected sensors.

The evolution of the sensor selection criterion over
the number of selected sensors is presented in Fig. 4.
The selection criterion value decreases in relation to the
number of remaining sensors in the backward elimina-
tion, as expected. However, we observe the inverse be-
havior when there is no spatial filters. This is probably
due to the large size of the input data and the low num-
ber of training samples. With pre-processing, feature
reduction improves the accuracy for the selected clas-
sifier. The evolution of the values for C1 and C4 also
decreases in relation to the number of remaining sensors
during the backward elimination. In addition, the use



of spatial filters in C4 allows keeping the SSNR higher
while decreasing the number of sensors. The impact of
the spatial filters is higher when the number of remain-
ing sensors is low as the gap between C1 and C4 is large.
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Figure 4: Evolution of the different criteria in relation
to the number of selected sensors.

7. CONCLUSION AND PROSPECTS

Several strategies for the sensors subset evaluation of a
P300-BCI speller have been evaluated. The best strate-
gies always consider spatial filters. In addition, the two
best methods are based on the evaluation of the SSNR
and the P300 recognition, showing that it is useless to
take into account the speller stage. While the SSNR
and the P300 recognition provide both equivalent re-
sults, both consider spatial filters based on the xDAWN
algorithm. Hence, the SSNR is directly computed dur-
ing the creation of the spatial filters whereas the P300
classification requires several training and testing. It
shows that the evaluation of the SSNR with spatial fil-
tering (C4), which can be done in one step, is sufficient
for creating suboptimal sets of sensors, i.e. suboptimal
sets of features for the classifier. This strategy allows
avoiding further processing while keeping good perfor-
mance.

Preliminary analysis of the ranks of each sensor ob-
tained with C4 evaluation suggest that several sensors
are common to every subject. For the different subsets
of eight sensors, which are personalized to each subject,

five sensors are common to half of the subjects. These
sensors are mostly located on the occipital area, con-
firming previous works suggesting that occipital sites
are relevant [5, 9]. Further works will treat the selection
of universal sensor locations, a common subset that pro-
vides high accuracy for the majority of individuals.
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