
  

 

Abstract— Heart auscultation is one of the most useful medical 

diagnostic tools for getting valuable information of heart valves 

and heart hemodynamics functions. However, the information 

acquired by a traditional stethoscope can be inaccurate and 

insufficient. Phonocardiogram (PCG) was developed to improve 

accuracy through visual inspection and analysis. Digitally 

processed, PCG can then be analyzed by automated heart sound 

analysis systems. But there is no standardization for PCG data 

acquisition unlike electrocardiogram (ECG). This study aims at 

analyzing the influence of cardiomicrophone localization on the 

chest for the study of cardiac sounds S1 and S2. For that purpose, 

simultaneous acquisitions of 12 PCG signals with one ECG signal 

were realized and a comparative analysis of delays between R 

waves of ECG and detected S1 and S2 sounds was conducted. 

Results show that there are significant differences between R-S1 

(or R-S2) intervals obtained from different areas of sensor 

placement on the chest. For future works on PCG, studies dealing 

with the analysis of heart sounds or proposing new heart sounds 

detection algorithms may pay attention to the location and 

attachment of PCG sensors. 
 

I. INTRODUCTION 

According to World Health Organization report from 2015 
[1], cardiovascular diseases (CVD) continue to be the leading 
cause of morbidity and mortality worldwide. One of the first 
steps in evaluating the cardiovascular system in clinical 
practice is physical examination. Heart auscultation is one of 
the most useful medical diagnostic tools for getting valuable 
information concerning the function of heart valves and 
hemodynamics and may reveal many pathologic cardiac 
conditions such as arrhythmias, valve disease, heart failure…. 
Heart sounds provide initial clues in disease evaluation and thus 
play an important role in the early detection for CVD.  

However, heart sounds examination using traditional 
stethoscope is subjective and depends on the examiner 
experience. Highly trained personal can provide more accurate 
information, but they are still limited by human ear possibilities 
which is poorly suited for cardiac auscultation. Therefore, 
phonocardiography (PCG) was developed and many new 
possibilities for heart analysis was made. With development of 
computer-aided auscultation, algorithms can automatically 
detect even inaudible sounds and recognize pathological 
phenomena [2-4]. PCG is a diagnostic graphical method of 
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recording sounds, echoes that accompany mechanical 
vibrations originating in the heart and vessels. It uses a 
microphone attached at the surface of the chest wall, and it is 
used to register heart sounds and murmurs in the diagnosis of 
heart disease. Among cardiac sounds, two, noted respectively 
S1 and S2, are particularly audible and correspond to the 
closure of respectively the atrial-ventricular valves (beginning 
of the ventricular systole) and the aortic and pulmonary valves 
(onset of the ventricular diastole). 

One difficulty remains that unlike electrocardiogram 
(ECG), there is no standardization in PCG acquisition and even 
if new methods of features detection are still coming there is no 
common way how to measure PCG. In most methodological 
articles dealing with S1 and S2 sounds detection [5-12], the 
location of cardio-microphones is not precisely mentioned. 
Only a few articles dating from several years now have 
explored the influence of several sites for heart sounds 
auscultation, using simultaneous PCG acquisition [13-15]. But 
conclusions were not clear about the differences between sites 
and whether one site is better than another. It appears that there 
are some variations of energy between sites. The cause is the 
localization of sensors (microphones), but the pressure of the 
sensor on the skin cannot be neglected. 

Considering the recent advanced methodological results to 
process PCG signals and detect heart sounds, it is of interest for 
accurate PCG data acquisition, to study the placement and 
fixation of the microphone on the chest. In this study, we 
investigate different auscultation sites and ways of attaching the 
microphones to analyze their influence on PCG signals quality. 
The comparison is carried out considering S1 and S2 sounds 
detection over several acquisitions. 

II. MATERIAL AND METHODS 

A. Data acquisition 

Acquisitions of simultaneous PCG and ECG signals were 
performed on 2 healthy volunteers at TIMC-IMAG laboratory 
(La Tronche, France), using a PowerLab data acquisition 
system (ADInstruments). All signals were sampled at 1 KHz. 

Each subject was equipped with 3 Disposable electrodes 
(Ag/AgCl) for a DI lead ECG and 12 cardiac microphones 
(MLT201, AD Instruments) put on the skin for PCG 
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acquisitions. The PCG auscultation sites are shown on Figure 
1. The location of the PCG sensors was chosen to include 4 
standard auscultation areas (red points) and well map the heart 
area. The points were also chosen so that they were easily 
identifiable and descriptive and allowed to repeat the same 
sensor placement for other measurements and subjects. For 
reference we considered intercostal areas and distance from the 
sternum. Similar sensor deployment was also used in a previous 
energy measurement study [13]. In the following, PCG 
auscultation sites are named from 1 to 12, starting from the top 
right of the heart and while moving right to left and top to down. 

Each measurement was performed in a quiet laboratory 
(without special acoustic shielding) at the sitting position of the 
subject. The appropriate auscultation places were found using 
palpation. After several investigations how to attach PCG 
sensors, microphones were fixed on the chest using thin 
double-sided tape (Fig. 1 left), with a hole so as the sensor is in 
contact with the skin. Pressure was then applied to the 
microphones thanks to Tegaderm (3M) transparent medical 
dressing. Each measurement took 2 minutes. For each subject, 
12 successive measurements were carried out. 

 
Figure 1.  Heart auscultation sites for PCG recordings. ICi is the number of 

intercostal space. Rj or Lj indicates the right or left parasternal area and j is the 

distance from the sternal bone. Red points correpond to 4 reference 

(standardized) heart sound measurement areas (from left to right and top to 
bottom: aortic, pulmonray, mitral and tricuspid valves). 

B. Signal processing 

S1 and S2 occur in all healthy individuals, and most of 
studies on PCG analysis deal with the detection of these sounds. 
A wide amount of methods uses the signal envelope detection 
for analyzing heart sounds [3,5-7]. Other methods are based on 
Short Time Fourier or Wavelet transformation in order to 
investigate the exact features of the heart sound [8]. More 
sophisticated methods also include probabilistic models such as 
Hidden Markov Models for segmentation of heart sounds 
[9,10] or neural networks [11,12]. For a most accurate 
reliability of the detector, the multimodality aspect of the 
acquisition has been exploited; synchronous ECG and PCG 
capture enables the use of the ECG signal as a time reference 
to improve detection of heart sounds on PCG signal. 

PCG signals were analyzed according to a signal envelope 
detection method using the Normalized Averaged Shannon 
Energy, classification and more accurate detection based on 
synchronization with the R and T waves of ECG. This method 
allows by simple set of different parameters to analyze very 
variable PCG signals measured on standardized but also non-
standardized locations. All processing steps were carried out 
using Matlab®. 

1) Heart sounds envelope signal estimation from PCG 
PCG signals were first band-pass filtered between 15 and 

150Hz and normalized to the maximum absolute value of the 
signal. The extraction of the heart sound envelope (Fig. 2) is 
then implemented, according to [16], by calculating the 
normalized average three-order Shannon energy, in continuous 
20-sample segments throughout the normalized signal with 10-
sample segment overlapping using the following formula.  It 
has been shown that the average Shannon energy can attenuate 
the effect of low value noise. 

𝐸𝑆 = −
1

𝑁
∙ ∑|𝑥(𝑖)|3 ∙ 𝑙𝑜𝑔|𝑥(𝑖)|3

𝑁

𝑖=1

 

where x is the normalized signal and N the samples number. 

The normalized average Shannon Energy was standardized 
by the following relationship, where µ is the average value of 
energy 𝐸𝑆 of the signal and 𝜎 the standard deviation of 𝐸𝑆. 
𝐸𝑁was then low-pass filtered (cut-off frequency = 20Hz) and 
used as the envelope of heart sound signal. 

𝐸𝑁 =
𝐸𝑆 − 𝜇

𝜎
 

 
Figure 2.  PCG signal and envelogram of heart sounds signals.. 

2) Detection of R and T waves on ECG signals 
The classical algorithm of Pan-Tomkins was applied on each 

ECG to detect R-waves. ECG were then processed through FIR 
Butterworth band-pass filter [0.5 - 10 Hz]. Then the signal was 
divided into individual RR segments, obtained by previous R 
peak detection. In order to make T wave dominant feature in 
RR segments the QRS complex were removed (as 50 ms at the 
start and at the end of RR segment). Then local maxima were 
found in each segment, with respect to minimum amplitude and 
minimum peak width for T wave based on literature. 

3) Detection of S1 and S2 sounds 
PCG envelope is divided into segments bounded by R peak. 

According to clinical knowledge, S1 occurs always after R 
peak and S2 occurs with the end of T wave for healthy heart 
conditions. It is difficult to determine the exact time of the S1 
or S2 sounds, but it is possible to get wider time blocks, in 
which S1 and S2 are likely to be found. The time intervals for 
these blocks of interest were determined on the basis of [17]. 
The block of interest for S1 was determined as 0.05 RR - 0.2 
RR and the one for S2 as 1.2 RT - 0.65 RR, where RR interval 
is the time between adjacent R peaks and RT interval is the time 
between R peak and the following T wave. Local maximum of 
PCG envelope was then detected inside each block of interest 
and annotated S1 or S2 depending the block. In case of no local 



  

maximum or many local maxima, the most significant peak in 
block of interest was selected. 

4) Parameters estimation 
With determined S1 and S2 on PCG signals and R and T 

waves on ECG signals, different parameters for temporal 
analysis were calculated, as illustrated on Fig. 3. It includes RR, 
RT, RS1, RS2, S1S1, S1S2, where XY corresponds to the 
interval between X event and the following Y event. 

 
Figure 3.  Parameters considered for analysis. Starting form R peaks and T 

waves of the ECG (top) and S1 and S2 sounds of one simulatenous 

normalized PCG (amonf the 12 chest positions), several temporal delays are 

computed all along the various recordings . 

C. Statistical analysis 

Statistical methods were considered to analyze the 
differences between PCG signals measured at different 
positions. First, statistical hypothesis tests were realized to 
evaluate if the various intervals were statistically different 
depending on PCG localization. Before each test, normal 
distribution of data was tested. If the assumption of normality 
was met, the paired Student's t-test was performed with 5% 
significance level. Then, for purpose of getting information 
about statistical relationship, correlations between data samples 
were measured. 

III. RESULTS 

A. Comparison between S1S1 and RR intervals 

The relationship between S1S1 and RR intervals was 
evaluated within one PCG channel (one position) and ECG 

channel for each recording. For each subjects, S1S1 and RR 
intervals were compared to each other so as to verify the 
functionality of the detection algorithm. The test of mean 
between S1S1 and RR interval durations was performed for all 
PCG positions and the mean difference S1S1 and RR was 
always 0 (p<0.05). And the correlation coefficient between 
S1S1 and RR was greater than 0.8 for all PCG measurements. 
RR intervals plotted against S1S1 intervals for one recording 
and for the 12 PCG channels is shown on Fig. 4 with computed 
linear regression. As expected, the heart rate computed from 
ECG is the same as the heart rate calculated from S1 sounds 
from PCG, regardless of the position of the sensors. This 
demonstrates the heart sounds detection algorithm’s efficiency. 

B. Are RS1 and RS2 the same all over the chest? 

The statistical relationship between RS1 (respectively RS2) 
intervals calculated from the different positions within a single 
measurement was tested. Test of mean was performed between 
each sensor location and the 11 remaining positions.  

After testing normal distribution, the paired Student's t-test 
was performed with following hypothesis. 𝐻0: 𝜇𝑑 = 0 𝑠, 
𝐻𝐴: 𝜇𝑑 ≠ 0 𝑠. For a great majority of measurements, 
considering RS1 intervals (resp. RS2), H0 was rejected at the 
5% significance level, which means there is a significant 
difference between the duration of the RS1 (resp. RS2) interval 
for different positions on the chest. This is illustrated for one 
measurement of one subject on Fig. 5 with the boxplots of RS1 
and RS2 intervals for the 12 PCG positions. 

Moreover, when considering RS1 intervals for all 
measurements, only 12% of the paired comparisons between 2 
PCG positions could bring the conclusion that RS1 samples 
from one position have the same mean duration than the RS1 
samples from the other position. Therefore, in 88% remaining 
comparisons, the mean RS1 duration was not the same between 
2 PCG localizations. It is also important to note that among the 
12% of situations with no significant difference on RS1 delays 
between 2 PCG positions, the 2 concerned positions were rarely 
the same. Obviously, none specific pair of sensors seems to 
stand out. 

 

 
Figure 4.  Correlation between S1S1 and RR intervals for 12 microphones 

positions on the chest . The relationship is linear (regression line y=x) and 

correlation coefficient greater than 0.8 for each graph. 

 
Figure 5.  RS1 and RS2 distributions for the 12 PCG poisitions on the chest 

for one measurement of one subject. The line inside the box corresponds to 
the median value, the boxlimits represent the first and the third quartiles and 

whiskers highlight extreme values. 



  

Similarly, for each sensor location, the correlation 
coefficient between RS1 (resp. RS2) from the considered 
position and RS1 (resp. RS2) from the 11 remaining positions 
was computed and was smaller than 0.8 for almost all 
measurements. As for an example, for one subject, among the 
792 computed correlations on RS1 samples (corresponding to 
66 paired comparisons on 12 measurements), only 13 
correlation coefficients were higher than 0.8 and among the 12 
measurements, it was never the same pair of PCG locations that 
provides this coefficient. Figure 6 shows for one measurement, 
RS1 intervals from aortic area position (position 1) against RS1 
intervals from the other PCG localizations, highlighting the 
absence of linear relation between RS1 intervals computed 
from various PCG positions. 

 
Figure 6.  RS1 from aortic area (position 1) plotted against the 11 other 

position on the chest 

The differences between RS1 (resp. RS2) intervals obtained 
from different PCG positions on the chest are then statistically 
significant, delays are variable and show that the heart sounds 
are propagated through the chest area. 

IV. CONCLUSION 

Nearly one hour of multi-channel PCG and ECG recording 
was measured and analyzed. For heart sound analysis, S1 and 
S2 detectors have been developed using PCG synchronization 
with R and T waves of ECG for a more reliable detection.  

Due to lack of information in previous research, the spread 
of the heart sounds on the chest surface has been investigated. 
The aim of the work was to prove whether at the same time, the 
same or at least similar signals could be measured at different 
positions on the chest. For this purpose, the intervals RS1 and 
RS2 were examined across the various chest localizations, by 
means of correlation and difference of mean values. The results 
show that with the chosen method of heart sound detection, 
there are significant differences in time domain for different 
areas of sensor placement. For next research and future works 
on PCG, studies dealing with the analysis of heart sounds or 
those proposing new heart sounds detection algorithms should 
therefore take into consideration the location of the sensors. 
Indeed, many studies that consider mean delays between ECG 
and PCG may fail when applied from one subject to another, if 
the microphone is not placed at the same position.   

Moreover, many tests also demonstrated the importance of 
the way of attaching PCG sensors to the patient, with various 
tested ways of attachment. The greatest differences were in the 
level of noise and magnitude of heart sound amplitudes.   

As a conclusion, telling what is the optimal localization of 
the PCG sensor is very difficult. Evaluation depends on many 
parameters (investigated parameters, considered signal 
processing methods, ways of attachment of sensors...). The 
assessment of their optimality depends on what applications 
and for what purpose the data obtained will be used.  
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