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Abstract— Quasi-periodic signals can be modeled by their
second order statistics as Gaussian process. This work presents
a non-parametric method to model such signals. ECG, as a
quasi-periodic signal, can also be modeled by such method
which can help to extract the fetal ECG from the maternal
ECG signal, using a single source abdominal channel. The
prior information on the signal shape, and on the maternal
and fetal RR interval, helps to better estimate the parameters
while applying the Bayesian principles. The values of the pa-
rameters of the method, among which the R-peak instants, are
accurately estimated using the Metropolis-Hastings algorithm.
This estimation provides very precise values for the R-peaks, so
that they can be located even between the existing time samples.

I. INTRODUCTION

Although fetal electrocardiogram (fECG) may bring useful
information about the health of fetus in fetal cardiac mon-
itoring, there is not yet a definite solution to obtain it in
a noninvasive manner. This limitation is mainly due to the
low signal to noise ratio (SNR) of the fetal ECG recorded
from abdominal sensors, which is highly contaminated by
the powerful maternal ECG (mECG). The fetal ECG signal
recorded from the maternal abdomen is also contaminated
by other kinds of sources such as electromyogram (EMG);
yet, the most important interference is the maternal ECG.

There exist different approaches for solving the mentioned
problem, among which one can name blind source separation
methods [1], or adaptive filters [2]. However, these methods
require more than one sensor for the data source, while we
use one single sensor, since in fetal heart monitoring it would
be more convenient and has lower cost. For this purpose,
there are a number of methods which have already been
examined, such as nonlinear decomposition [3], or shrink-
age wavelet denoising [4]. Nevertheless, the most efficient
method can be considered as Kalman filtering [5]. However,
because of the strong assumption of Kalman filter to model
the unobserved state, the authors have already proposed a
non-parametric method in order to model the second order
statistics of the data using Gaussian process [6], [7]. In this
paper, we mainly use the same method, but we will consider
other problems in this regard.

This work will investigate the modeling of a quasi-periodic
signal like ECG, using a non-parametric model. Here, the
problem of estimation of the model parameters is tackled,
and using the physiological and mathematical characteristics
of the ECG signal [8], [9], a prior information is defined
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for the parameters. The problem of fetal R-peak detection
is also targeted. Although the detection of maternal R-peak
instants is less difficult, the fetal R-peaks could disappear
in the presence of EMG, maternal ECG and other powerful
interferences and noises. Most of the methods that try to
detect fetal R-peaks have been unable to detect these peaks
in noisy backgrounds [10], [11]. However, modeling the
second order statistics of the data would help to improve
the robustness to the additive noise in the non-parametric
modeling. Not only the R-peak instants can be detected using
this model, but also the method can increase the precision
of the detected peaks to be estimated even between the data
samples. Therefore, it could let us compensate the missing
information if the data does not have enough samples, or if
there exists a data loss in the source; for example, the peaks
of QRS waveforms could be cut off due to the saturation
in amplifier that can be caused by high electrode offset
voltage, or improperly calibrated amplifiers. However, the
missing samples can be reconstructed according to the non-
parametric method.

In section II the non-parametric modeling method is briefly
presented to model a quasi-periodic signal. Afterwards the
fetal ECG extraction is described in section III as an applica-
tion of the non-parametric modeling. The proposed method
is tested on real data, which are presented in section IV.
Section V will sum up the proposed methods and analyses.

II. NON-PARAMETRIC MODEL FOR A
QUASI-PERIODIC SIGNAL

In this section, the non-parametric modeling of a quasi-
periodic signal is presented.

Let s(t) denote the quasi-periodic signal. By considering
this signal as a statistical process, it can be described by
its second order statistics: i.e. its mean function m(t)

4
=

E[s(t)] and its covariance function k(t1, t2)
4
= E[(s(t1) −

m(t1))(s(t2) − m(t2))] [12]. As a consequence, consid-
ering only its second order statistics, it relies among the
Gaussian process (GP) framework which is widely used in
machine learning e.g., [13], [14] and is denoted by s(t) ∼
GP
(
m(t), k(t1, t2)

)
. Depending on the semidefinite positive

function chosen as the covariance one k(·, ·) of the GP, it is
possible to describe the expected properties of the modeled
signal s(t). For instance, the classical square exponential
function k(t1, t2) = exp(−(t1− t2)2/(2l2)) allows to model
a stationary process whose smoothness is adjusted by the
length scale l: the larger the value of l is, the smoother the
process is.
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Fig. 1. Illustration of the time warping: each heart beat is linearly wrapped
into a 2π length interval.

To model an ECG signal as a GP, we propose the following
covariance function:

k(t1, t2;θ) = σ2 exp

(
− (t1 − t2)2

2l2

)
×

exp

(
−

sin
(
φ(t1; {τk}k)− φ(t2; {τk}k)

)2
2λ2

)
, (1)

where θ =
{
σ2, l2, λ2, {τk}k

}
is the set of hyper-

parameters, {τk}k is the set of R-peak instants and
φ(·; {τk}k) is a time warping function which models the
quasi-periodicity of the ECG as detailed below. This covari-
ance function allows to well fit the properties of an ECG. In-
deed, the second term of (1), i.e. exp(− sin(φ1−φ2)2/(2λ2))
which defines a strictly π-periodic process, is completed
by the time warping function φ(·; {τk}k) which wraps each
heart beat into an interval of length 2π: φ(t; {τk}k) is defined
such that each interval [τk−1, τk) is linearly mapped into the
interval [2(k − 1)π, 2kπ) (Fig. 1). An ECG beat mapped to
the phase domain is shown in Fig. 2. In other words, the
second term in (1) allows to adjust the duration of each beat
to model the variability of the RR intervals. Finally, the first
term in (1), i.e. exp(−(t1 − t2)2/(2l2)), models the shape
variability of each heart beat by adjusting the correlation
between consecutive beats with l2. Figure 3 shows two
functions drawn at random from a zero-mean GP prior with
covariance function (1), σ2 = 1, l = 10 and λ = 0.4. For
these two examples, the two sets of τk are different.

Obviously, to correctly model a real ECG, the hyper-
parameters θ must be adjusted according to the recorded
data. One way is to maximize the log-likelihood:

θ̂ = arg max
θ

log p
(
s(t)|θ

)
, (2)

where p(s(t)|θ) is the density probability function (pdf)
of s(t) given the parameters θ. If one wants to embed

Fig. 2. An ECG beat in phase domain
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Fig. 3. Illustration of the flexibility of a GP modeling: two functions ran-
domly drawn from GP(0, k(t1, t2)) with the same covariance function (1)
but two different sets of τk .

some prior knowledge on the signal shape, it could be more
advantageous to use a Bayesian scheme by estimating the
hyper-parameters θ as the maximum of the posterior pdf:

θ̂ = arg max
θ

log p
(
θ|s(t)

)
, (3)

where p(θ|s(t)) ∝ p(s(t)|θ)p(θ), with p(θ) the prior distri-
bution of the hyper-parameters. In this study, the prior is cho-
sen as a separable term: p(θ) = p(σ2)p(l2)p(λ2)p({τk}k),
where p(σ2), p(l2) and p(λ2) are of Gamma pdfs (Γ(α·, β·),
with · ∈ {σ2, l2, λ2}) and p({τk}k) is derived from the
distribution of the RR intervals. By assuming that all the
RR intervals are independent and identically distributed with
a gaussian pdf of mean µR and variance σ2

R, p({τk}k) is a
multivariate gaussian distribution with mean vector µ, whose
k-th element is τ0 + kµR and covariance matrix Σ, whose
(i, j)-th entry is Σi,j = min(i, j)σ2

R.

III. APPLICATION TO FETAL ECG EXTRACTION

In this section, the proposed non-parametric model of ECG
signal (Section II) is applied to extract fetal ECG from a
single sensor placed on the pregnant woman’s abdomen. In
this case, one can model the recorded signal x(t) as the
summation of the fetal ECG sf (t), the maternal ECG sm(t)
and an additive noise n(t):

x(t) = sm(t) + sf (t) + n(t). (4)

Both ECG signals are modeled as GP:

sm(t) ∼ GP
(
0, km(t1, t2;θm)

)
,

sf (t) ∼ GP
(
0, kf (t1, t2;θf )

)
,

with the covariance matrices defined by (1). Moreover, the
noise n(t) which is composed of the baseline variations and
the remaining noise is also modeled as a zero-mean GP
whose covariance function kn(t1, t2;θn) is defined by

kn(t1, t2;θn) = σ2
bl exp

(
− (t1 − t2)2

2l2bl

)
+σ2

nδ(t1−t2), (5)
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where θn = {σ2
bl, l

2
bl, σ

2
n} and δ(·) is the delta-Dirac func-

tion. The first term corresponds to the baseline (i.e. a smooth
signal) and the second one defines a white Gaussian noise.
Hence, the posterior estimation of signals sf (t) and sm(t)
at time t∗ are given by

ŝm(t∗) = km(t∗)
TK−1x, (6)

ŝf (t∗) = kf (t∗)
TK−1x, (7)

where x = [x(t0), · · · , x(tN−1)]T is the vector of the N
observed data at time ti, K is the covariance matrix of the
observed data whose (i, j)-th entry is

Ki,j = km(ti, tj ; θ̂m) + kf (ti, tj ; θ̂f ) + kn(ti, tj ; θ̂n),

and km(t∗) = [km(t∗, t0; θ̂m), · · · , km(t∗, tN−1; θ̂m)]T and
kf (t∗) = [kf (t∗, t0; θ̂f ), · · · , kf (t∗, tN−1; θ̂f )]T are the
vectors of the covariances evaluated at all pairs of observed ti
and estimated times t∗. The optimal values of the param-
eters θ̂m, θ̂f , θ̂n are given by the maximization of the
posterior of these parameters:

θ̂ = arg max
θ

p(θ|x) = arg max
θ

p(x|θ)p(θ), (8)

with θ = {θm,θf ,θn} and p(θ) = p(θm)p(θf )p(θn)
because the fetal and maternal signals and the noise are con-
sidered to be independent. Since this posterior distribution
is not trackable in a direct analytic way, it is proposed to
sample it using the Metropolis-Hastings algorithm [15] and
then to chose the more accurate values of θ.

Several important remarks should be noticed. First of all,
the estimated time t∗ can be any value: it is not restricted
to be one of the observed times ti, i ∈ {0, · · · , N − 1}.
This means that the recorded signals can be down sampled
before the estimation of the hyper-parameters by (8) to
reduce the computational time. The hyper-parameters αk

and βk defining the priors are chosen based on physiolog-
ical analyses to fit a reasonable set of values. The same
choice is made for the hyper-parameters {µR, σR}k∈{f,m}
defining the heart rates of mother and fetus [16], [17]. In
case of multiple pregnancy, the proposed methods can still
be used by adjusting the model (4) with the number of
fetuses. Finally, the optimization of the hyper-parameters (8)
provides estimations of the maternal and fetal R-peak times
by {τ̂ (m)

k }k and {τ̂ (f)k }k, respectively. It is worth noting that
these estimated R-peak times are not limited to the sampled
times but can be more precise.

IV. RESULTS

The proposed method is applied on two data sets. First,
the proposed method is used to extract fetal and maternal
ECG from a single sensor. Then, the accuracy of the fetal
and maternal R-peak detection is investigated.

A. Fetal and maternal ECG extraction

Based on physiological considerations, the hyper-
parameters defining the prior Gamma distributions and the
normal distribution of the RR intervals of θf and θm are
summarized in Table I.

Maternal Fetal
σ2 [V2] Γ(5, .2) Γ(5, .001)
λ2 [] Γ(5, .005) Γ(5, .002)
l2 [s−2] Γ(5, 40) Γ(5, 10)
RR interval [s] N (1, .002) N (.5, .004)

TABLE I
VALUES OF HYPER-PARAMETERS OF PRIOR DISTRIBUTIONS ON θm AND

θf .
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Fig. 4. Illustration of the extraction of fetal ECG. The top plot shows
the recorded signal, middle plot shows the extracted maternal ECG and the
bottom plot shows the extracted fetal ECG.

The first data is a single-channel abdominal ECG taken
from the DaISy dataset [18], with a sampling frequency fs
of 250Hz. The maternal and fetal ECG signals are extracted
from this data, and the results are shown in Figure 4(a). The
second data is a single-channel abdominal ECG recorded on
an 8th month pregnant woman with a sampling frequency
of 4kHz using ADInstruments Bio Amp amplifier, and the
Powerlab hardware. As explained in Section III, the data
were down sampled to 80Hz before applying the proposed
method. As one can see, the proposed method is effective to
extract fetal ECG even if its amplitude is quite smaller than
the maternal ECG. Moreover, the proposed method allows
to extract fetal beat even when it arises during the maternal
QRS complex (e.g., the first beat on Figure 4(b)).

B. R-peaks detection accuracy

To show the precision of the method in R-peak detection,
our own recorded data is used. The fetal and maternal R-
peaks are manually indexed using the original sampling
frequency fs (4kHz) leading to the ground truth of R peaks
times with thus a precision of 250µs. The sampling rate
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Fig. 5. Accuracy of the R-peaks detection using the proposed method.

of the signal is then reduced by a factor of 50, and the
non-parametric method would extract the fetal and maternal
ECG signals from the new signal with the reduced sampling
frequency (80Hz). The error of R-peak times detected from
the extracted ECG signals, comparing the original R-peak
times, detected from the original signal, is averaged over
all R-peaks and is shown as black bars in Fig. 5 for both
maternal and fetal signals. As it was explained before, the
R-peak times, as one of the hyper-parameters of the method,
can be detected on any time instants ignoring the existing
time samples on the signal, so these R-peak time values are
estimated using the method from the down-sampled signal,
and their mean error comparing the original R-peak times is
also depicted in Fig. 5 as white bars. From this figure, which
also shows the confidence interval with the confidence level
of 99%, it is evident that the estimated samples for R-peaks
have a very low error comparing the R-peaks of the down-
sampled data. In other words, the R-peak times are precisely
reconstructed from the signal with a low number of samples.

V. CONCLUSIONS

We have studied a non-parametric modeling of quasi-
periodic signals, so that they are modeled with Gaussian pro-
cess (GP) by considering appropriate mean and covariance
functions. ECG, as a quasi-periodic signal, is also modeled
as GP both for mother and fetus, with mean functions equal
to zero and their corresponding covariance functions. The
hyper-parameters defining the covariance functions are then
estimated accurately by assuming that they follow Gamma
prior distributions whose parameters are chosen according
to physiological considerations and so that they can describe
the shape of the ECG signal. The R-peak instants can also be
considered as a set of parameters such that the RR intervals
follow a normal distribution. The mean and variance of these
normal distributions are also defined to match the statistical
behavior of RR intervals. Afterwards, the estimated param-
eter values, using Metropolis-Hastings algorithm, provide
covariance functions that can best describe the maternal and
fetal ECG signals. Besides, the R-peaks can be detected at
any time instants ignoring the existing time samples of the
data. Therefore, even if the signal does not have enough
samples, or there is a data loss in the source, the method can
reconstruct the missing samples. Keeping in mind that the
signals can be extracted at any time (observed time samples
or not), this method can be applied on the signal that has
been down sampled (i.e., with reduced number of samples),

in order to increase the speed of the method.
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