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Abstract— This article presents a new processing method
to design brain-computer interfaces (BCIs). It shows how to
use the perturbations of the communication between different
cortical areas due to a cognitive task. For this, the network
of the cerebral connections is built from correlations between
cortical areas at specific frequencies and is analyzed using graph
theory. This allows us to describe the topological organisation
of the networks using quantitative measures. This method is
applied to an auditive steady-state evoked potentials experiment
(dichotic binaural listening) and compared to a more classical
method based on spectral filtering.

I. INTRODUCTION

The general goal of the research carried out in the field

of brain-machine interfaces (BMIs) is to provide disabled

people suffering from severe motor diseases with a tool to

restore communication and movement [2]. However brain-

machine interfaces remain difficult to use in everyday life.

Two main reasons can account for this situation: firstly,

information transfer rate is low (about 35 bits per minute),

and thus constrains drastically the possibilities of interaction;

secondly, most systems are synchronous, i.e. the analysis of

the cerebral activity is synchronized with a trigger, therefore

the attention of the user is permanently drawn by the stimu-

lus. Thus, increasing interest is devolved to the development

of asynchronous BMIs.

Asynchronous BMIs have been first defined by Mason

and Birch [7] in opposition to synchronous BMIs in which

subjects have to perform a concentration task when the

system is ready. Tasks involved in synchronous BMIs are

called time-locked because tasks occur in a specific time

interval after a trigger has been given by the system. An

asynchronous BMI is therefore defined as a system in which

the subject performs the task whenever he wants. So far,

only a few successful experiments have been reported by

different groups [10], [5], [7]. Among those approaches, two
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classes must be distinguished: Mason’s group rely on operant

conditioning resulting in an unspecific task, sometimes long

to train, sometimes long to train, whereas Millàn’s group and

Pfurtscheller’s group rely on a specific conscious cognitive

task, which seems easier to learn. This paper aims at pro-

viding signal processing tools for the second approach by

modelling a cognitive task as a dynamic modification of the

communication between different cortical areas.

This paper shows how to model the subject’s mental state

based on the study of the dynamic of the cortical connections.

We propose to model brain activity as a complex network

in which nodes represent sensors and links between nodes

represent a frequency-specific correlation between two sen-

sors. Such a model aims at taking into account the whole

knowledge acquired about dynamics of brain rhythms (event-

related desynchronization and synchronization of neuronal

populations during a cognitive task) and to focus on the

modifications of the stable brain states induced by a cognitive

task [9]. Whereas this kind of model is often used in

functional magnetic resonance imaging [1] from a static point

of view, we want to analyze the topology of a complex

network as a time-varying function. Graph theory provides

us with many parameters to describe such an organization

[3]. We will choose one of them which is interesting for our

purpose.

The remainder of the paper will detail the proposed

method, and present an example of application with a steady-

state auditive evoked potentials experiment.

II. METHODS

A. Graph Construction

Let xn(t) denotes the signal recorded by the sensor num-

ber n ∈ [1..N ], where N is the total number of sensors. As

mental tasks are frequency-dependent, there exist frequency

specific perturbations of the cerebral activity, thus signals

are processed in the frequency domain. Therefore, at each

interesting frequency bin (from a neurophysiological point

of view) fi, the signal acquired is filtered:

y(fi)
n (t) =

∫ ∞

−∞

hi(u)xn(t − u)du

where hi(t) is a pass-band filter centered around the fre-

quency fi. This first step aims also at denoising the observed

signals.

Then let C(fi)(t) ∈ [−1; 1]N×N defines the time-varying

estimation of the correlation matrix at time t. This matrix

is the main basis of the complex network in which nodes
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represent sensors and links between nodes represent the

strength of the communication between the cortical areas

associated to each sensor. This network can be summarized

by an adjacency matrix A(fi)(t) ∈ {0, 1}N×N . An adjacency

matrix is defined by:

a(fi)
m,n(t) =

{

0 si |c
(fi)
m,n(t)| < σ(fi)(t)

1 si |c
(fi)
m,n(t)| ≥ σ(fi)(t)

(1)

where c
(fi)
m,n(t) is the (m,n) term of the correlation matrix

C(fi)(t). σ(fi)(t) is determined according to the following

criteria:

• in order to be able to compare different graphs, we set

an authorized number of links in each network. So that

differences between graphs are due to a modification of

the stronger connections and not due to a global increase

of the correlations between sensors. The number of

links allowed in each network is chosen according to

the experimental observations showing a small-world

organization of this kind of network [1]. Such an organi-

zation has been reported for many self-organized natural

systems (e.g. social networks or spread of diseases [3]).

The main property is that such networks consist of

many short links and a few long-range connections.

Information diffusion is made very efficient by such a

combination of short and long-range connections i.e.

ratio between the number of nodes to cross to go from

a node to any other one in the network and the total

number of links in the network is optimal.

• a frequency-specific threshold is chosen to take into

account the increase of the variance of the estimators

in terms of the wavelet scales

Such a construction results in a binary symmetric ad-

jacency matrix: links between nodes are either present or

absent. In order to study the dynamics of such a network, the

adjacency matrix A(fi)(t) is computed on short-term moving

windows1.

B. Time-evolving topological measures

A measure called global efficiency is currently used to

study the topological organization of the networks [3]. This

measure characterises the capacity for parallel information

transfer between nodes via multiple series of edges. This

reduces the number of parameters describing the graph from
N(N−1)

2 (the matrice A(fi)(t) is symmetric) to N for each

frequency.

Let G(fi)(t) denotes the graph related to the segment

of data associated to each sensor, {y
(fi)
n (t)}n∈[1..N ] at fre-

quency fi. L
(fi)
m,n(t) is the shortest path length between the

node m and the node n at time t. Global efficiency of the

node m in the graph G(fi)(t) is then defined as [6]:

E
(fi)
globm

(t) =
1

N − 1

∑

n∈G(fi)(t)
n 6=m

1

L
(fi)
m,n(t)

(2)

1Every step of the procedure is freely available as a R package devel-
oped by author S. Achard and available on the official CRAN website,
http://cran.r-project.org/.

This measure quantifies connections of the link m to other

nodes of the graph. Indeed, if a node m is isolated from one

other node n (because of a lack of conections between those

two nodes), then L
(fi)
m,n(t) = ∞ and 1

L
(fi)
m,n(t)

= 0.

III. EXPERIMENTAL RESULTS

The method presented above is used to analyze signals

acquired during a steady-state auditive evoked potentials

experiment. This new experiment has been carried out by the

team of Olivier Bertrand, head of the department “Cerebral

Dynamics and Cognition“, unity U821 of the INSERM

(French Medical Research Institute).

A. Description

Different kinds of cerebral activities can be used to design

a brain-computer interface. Each of them needs a specific

signal processing method which must take advantage of

our knowledge about neurophysiology of the cognitive task.

For example, neurophysiological basis of motor imagery

have been widely studied and have yielded different brain-

computer interfaces based on event-related synchronizations

and desynchronizations. Those phenomena result in an in-

crease or a decrease of spectral power in specific bands.

This experiment designed at the INSERM relies on steady-

state evoked potentials. When a cerebral activity gets syn-

chronized with a stimulus, it is called steady-state evoked

potentials. Such responses can be visual (light flashes are

sent at specific frequencies), auditives (the stimulus is a

pure sinusoidal sound) or somatosensory (grasp an object

vibrating at a certain frequency implies a synchronization

of different brain areas around the sensorimotor cortex).

The experiment described here go further: the idea is that

the strength of an auditive steady-state potential can be

modulated by the attention. Thus, in the case of a dichotic

binaural listening (each ear is stimulated with a different

sound), it is postulated that the strength of the steady-

state response is alternatively modulated when the subject is

concentrated on one or the other sound. Figure 1 summarizes

the principle of this experiment.

Sinusoid 800 Hz
modulated at 29 Hz

of the steady−state response
Attentionnal modulation

modulated at 21 Hz

Sinusoid 500 Hz

Fig. 1. Steady-state auditive evoked potentials experiment. During a
dichotic binaural listening (right ear: 500 Hz sinusoidal sound modulated at
21 Hz, left ear: 800 Hz sinusoidal sound modulated at 29 Hz), it is stated
that there exists an effect of the attention on the strength of the steady-state
response.
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A brain-computer interface based on this principle can be

easily imagined: if we can detect where is focused the atten-

tion of the subject, we can assign to each sound a specific

command. Lastly, let us remind that cortical synchronizations

are observed and searched with modulation stimulus (21 or

29 Hz).

B. Analysis

Even if this method is an excellent candidate to decrease

the constraints of the current brain-computer interfaces, it

raises some validation issues: we indeed know what the

subject is supposed to do (to draw his attention on one of the

sounds) but we do not know either what he is really doing

or what difficulties he encounters (does he really succeed

in concentrating?). Therefore two signal processing methods

have been used to try to increase our confidence about the

results obtained.

Recording conditions: Magnetoencephalographic

(MEG) signals from 275 sensors are sampled at 600 Hz.

A stereo-headphone is used by the subject to listen to the

stimuli.

Connectivity networks: Neurophysiological bases of

the described principle are well-known and can be easily

used: we are looking for signals inside the brain which

synchronizes at 21 or 29 Hz. Thus the first step of the study

consists in filtering the observed signals at 21 and 29 Hz,

which yields two different sets of signals. Frequency-specific

signals are then used to build time-varying graphs. Although

each one of the 275 sensors are used to construct the network

and compute the global efficiencies, only about half of them

are used as features. Global efficiencies of sensors of the

left part of the brain computed from 29-Hz signals are kept.

Similarly, global efficiencies of sensors of the right part of

the brain computed from 21-Hz signals are equally kept.

This methods gives 264 features to classify the data (global

efficiencies from the central part of the brain are thrown

away). A support vector machine is then used to perform

the classification.

Spectral analysis: A simpler method is also used in

order to compare the results and to increase the confidence

about the success of the task. As a first step, signals from

the left part of the brain are filtered using a pass-band filter

centered on 29 Hz and signals from the right part of the brain

are filtered using a pass-band filter centered on 21 Hz. As

for the previous method, the sensors from the central part of

the brain are not used. This yields 264 features, which are

classified by a SVM.

C. Results

During a preliminary study, we focused our attention on

the variance of the global efficiency (method 1) and the

variance of the power spectral density estimations (method

2) as a function of the length of the windows considered.

Each method is quite instable (high variance) for windows

of length less than 2400 points. As a consequence, we focus

here on windows of 3200 samples (about 5.3 seconds).

A delay of 60 samples is applied between two successive

analyses. Lastly, pass-band filters are Finite Impule Response

Filters of 200 coefficients. Such a number of coefficients

is necessary to have a good resolution power and thus

discriminate between 21 and 29 Hz.

Figure 2 presents the results of the discrimination between

the left-ear attention condition and the right-ear attention

condition. For this experiment, recordings have been splitted

into two sets: the first one is used for the training of the

classifier and the second one is used as a test set. Figure 2(a)

is obtained using the method presented here based on the

topological evolution of connectivity graphs. Figure 2(b)

shows classification results obtained using the method based

on spectral density estimations. Those two methods give

quite similar classification results.
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Fig. 2. Classification results for the steady-state auditive evoked potentials
experiment. Fig. 2(a): classification results using the method based on
complex networks (decision scores obtained by the SVM). Darkgray areas
correspond to an attention focused on right ear sound, lightgray correspond
to an attention focused on left ear. Fig. 2(b): classification results using the
method based on spectral density estimation (decision scores obtained by
the SVM). Darkgray areas correspond to an attention focused on right ear
sound, lightgray correspond to an attention focused on left ear. Classification
scores are computed as regard as theoretical task which is quite uncertain.

IV. DISCUSSION

For both methods, results remain too low to be able

to design a user-friendly and reliable brain-computer in-

terface. Nevertheless, the principle described here seems

to be promising. For example, such a principle can be

easily used to combine brain-computer interfaces, i.e. using
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different neurophysiological bases as commands (steady-

state auditive evoked potentials and motor imagery). Thus

such a complementary approach would be of great interest

to design brain-computer interfaces.

Fig. 3. Connectivity networks during a left ear attention task (figure left)
and right ear attention (figure right)

Because of the use of magnetoencephalography in this

study to acquire signals, everyday life applications are not

straigthforward. Yet the same principle can be easily ex-

tended to an electroencephalographic study. Spatial resolu-

tion is indeed not really a limiting factor.

One can observe that graph analysis gives noisier results.

The main cause is the use of correlation measures, which

thus have to be replaced by a more stable one.

The method using graph analysis shows similar results

in comparison to a simpler method based on the power

spectrum of time series. The use of connectivity graphs has

already shown to be of great interest in neuroscience to

explore the role of brain regions at rest [1]. In the context

of BCI, we have shown that a simple, univariate method

based on the power spectrum of time series is also able

to analyse signals from an experiment based on auditory

attention. However, the use of a multivariate method such

as graph connectivity in this context is also motivated by

the possibility of improvements for further experiments like

motor imagery. The connectivity graphs will allow us to

select the most relevant sensors to take into account in the

classification, for example in looking at category of nodes

like hubs. Finally, the method using connectivity graphs will

allow us to use more specialized characteristics (such as

clustering, modularity. . . ) in adequation with the experiments

and nature of the data. Lastly, source separation could be

able to extract the different dynamical causes of an observed

graph. This will be done by considering a graph as a linear

mixture of statistically independent graphs.

V. CONCLUSION

A new experiment, designed and carried out at the IN-

SERM was presented in this article. It is based on the

modulation effect of the attention on the steady-state audi-

tive evoked responses. We presented two different analysis

methods to discriminate signals acquired using a magnetoen-

cephalography. Both of them give similar results. Although

they need some improvements (such as a better sensor

selection before classification), our results suggest that this

kind of brain-computer interface is promising.

Some improvements are underway: delayed correlation

measures can be easily introduced to take into account

a possible delay of neuronal communication; correlation

can be replaced by a non symmetric measure which could

represent a direction of communication between different

cortical areas; weighted links (according to the correlation

value) could lead to a better understanding of the involved

phenomena. Lastly it could be of great interest to use this

method in the source space instead of the sensor space.

Such an improvement could be based on two different

approaches: by solving the electromagnetic inverse problem;

or by looking for time-selective independent sources with

blind source separation methods.
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