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Abstract— Brain-computer interface (BCI) is a system for di-
rect communication between brain and computer. In this work,
a new unsupervised algorithm is introduced for P300 subspace
estimation: the raw EEG are thus enhanced by projection on
the estimated subspace. Moreover a simple scheme to detect
the P300 potentials in the human EEG by dimension reduction
and linear support vector machine (SVM) is proposed to build
a BCI based on the P300 speller. The proposed algorithm is
finally tested with dataset from the BCI Competition 2003 and
gives results that compare favourably to the state of the art.

I. INTRODUCTION

Brain-Computer Interfaces (BCI) enable direct communi-

cation between the user’s brain and a computer by analysing

electroencephalographic (EEG) activities that reflect the

brain functions [1], [2]. Such kind of human-computer inter-

faces, that provides a new non-muscular powerful channel

for communicating with the external world, is suitable for

people that are incapable of any motor functions (e.g. people

with severe neuromuscular disorders or ‘locked in’ people).

Present-day BCIs determine the intent of the user from

different electrophysiological signals : for instance, the user

may control some brain waves (e.g. mu or beta rhythms) or

the BCI may exploit natural responses of the brain to external

stimuli (e.g. event-related potentials) [1].

The BCI problem we are addressing in this paper concerns

the P300 speller [3], [4]: it enables people to write text

on a computer. It is based on natural responses of the

brain to external visual stimuli (oddball paradigm). The

task is thus to discriminate between epochs containing a

P300 potential which is evoked by the target stimulus from

epochs associated with the non-target stimuli. Unfortunately,

the signal-to-noise ratio (SNR) of EEG signals is very low,

and moreover the recorded EEG signals may also contained

muscular and/or ocular artefacts. Several methods, based on

independent component analysis (ICA), were thus proposed

to enhance the SNR and to remove the artefacts [5], [6].

However, the major drawback of such methods is that they

are not specifically designed to separate brain waves and they

are supervised. Indeed, after the decomposition in indepen-

dent components (IC) it is necessary to select (manually or

thanks to spatio-temporal prior) the ICs which contained the

evoked potentials.

In this paper, we propose a new unsupervised algorithm to

automatically estimate P300 subspace from raw EEG signals.

The aim is to provide a new method so that the spelling debit
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(a) (b)

Fig. 1. Brain-Computer Interface “P300 speller”. Fig. 1(a): screen display
as was shown to the subjects with an highlighted row. Fig. 1(b): time course
of the actual average signal waveforms at Cz .

is increased. This paper is organized as follows. Section II

describes the P300 subspace estimation and the BCI classi-

fication problem. Section III presents the results that have

been achieved whereas Section IV concludes the paper with

comments and perspective on the work.

II. METHODOLOGY

The aim of this study is to provide a simple and un-

supervised estimation of the P300 subspace so that the

classification between target/non-target epochs is simplified

which thus leads to a faster spelling device.

A. P300 speller Brain-Computer Interface

The BCI addressed in this paper is the P300-speller intro-

duced by Farwell and Donchin [3]. It enables users to spell

a text: a 6 × 6 matrix, that includes all the alphabet letters

as well as other symbols, was presented to the user on a

computer screen (Fig. 1(a)). A sequence is thus defined as the

intensification of each of the 6 rows and of the 6 columns in a

random order. To spell a character, the users had to mentally

count the number of times the letter/symbol, they wish to

communicate, is intensified. In response to this counting, a

P300 evoked potential was elicited in the brain (i.e. a positive

deviation around 300ms after the stimulus). The desired

character hence appears on 2 out of the 12 intensifications in

a sequence, since a character is defined as the intersection of

a given row and a given column. The task is thus to detect the

oddball stimuli (row/column intensifications) which lead to a

P300 evoked potential (Fig. 1(b)). To produce a more robust

BCI, each character was spelt several consecutive times.

However, this repetition decreases the number of characters

spelt per minute: e.g. with 15 repetitions, only 2 characters

were spelt per minute [3], [4].

The aim of the proposed method is thus to correctly predict

a character by as low as possible sequence repetitions leading
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to increase the information rate.

B. P300 subspace estimation

The raw EEG recorded from the user’s scalp not only

contain the desired P300 evoked potentials but also ongoing

activity of the brain and muscular and/or ocular artefacts. As

a result, the SNR is very low and the classification task (i.e.

the character prediction) is not easy. We thus proposed to

enhance the P300 potentials by projecting the raw recorded

EEG on the P300 subspace (i.e. the subspace which contains

most of the P300 potentials) before the classification.

To estimate P300 subspace, a learning database is used.

It consists in a database for which the spelt characters are

known as well as the order of rows/columns intensifications

and the corresponding timecodes (i.e. beginning time of

illumination).

Let φ1(t) denote a typical time course of a P300 potential,

which is called a kernel. Using the learning database (for

which the oddball stimuli were known), it is possible to

define a reference signal r1(t) to the P300 potentials time

course by

r1(t) =
J

∑

j=1

αj φ1(t) ∗ δ(t− τj), (1)

where δ(t) is the Dirac delta function, τj the (known) times

of oddball stimuli which elicited a P300 potential in the

brain, αj is a scale factor, J the number of oddball stimuli

and ∗ is the convolution product.

Let x(t) ∈ R
Ns denote the observations vector at time

index t (Ns is the number of sensors). The aim of the P300

subspace estimation is to estimate a vector b̂ such that

(

b̂, α̂
)

= arg min
(b, α)

‖bT
x(t)‖2 = 1

‖r1(t)‖2 = 1

T−1
∑

t=0

∣

∣

∣
bT x(t)− r1(t)

∣

∣

∣

2

, (2)

where .T is the transpose operator. α = [α1, · · · , αJ ]T is

an unknown hyper-parameter which models the possibility

that distinct P300 potentials may have different amplitudes.

Using basic algebra manipulations, criterion (2) can be also

expressed as

(

b̂, α̂
)

= arg min
(b, α)

‖X b‖2 = ‖M α‖2 = 1

∥

∥

∥
X b−M α

∥

∥

∥

2

2
, (3)

where M ∈ R
T×J whose j-th column entries are φ1(t)∗δ(t−

τj) for all t ∈ {0, · · · , T − 1}, and X = [x(0), · · · ,x(T −
1)]T ∈ R

T×Ns .

Let EX (resp. EM ) denote the space spanned by X

(resp. M ), and let QX (resp. QM ) denote an orthonormal

basis of EX (resp. EM ). The solution of problem (3) is thus

given by the couple of singular vectors (b̂, α̂) associated

with the largest singular value of QT
X QM . However, kernel

φ1(t) used to generate matrix M is unfortunately unknown.

To overcome this difficulty, a recursive scheme to estimate

the best kernel φ1(t) is proposed.

Let φ
(k)
1 (t) denote the estimation of kernel φ1(t) at step

k and let M (k) denote the matrix M generated thanks to

the estimation of kernel φ1(t) at the previous step. The j-th

column entries of M (k) is thus given by φ
(k−1)
1 (t)∗δ(t−τj)

for all t ∈ {0, · · · , T − 1}. Solving (3) provides a couple
(

b(k), α(k)
)

which leads to s
(k)
1 (t) = b(k) x(t) and to

r
(k)
1 (t) = M (k) α(k). Signal s

(k)
1 (t) is then epoched to update

φ
(k)
1 (t): ∀ j ∈ {1, · · · , J}

f
(k)
j (t) =

(

s
(k)
1 (t)×ΠT300

(t− τj)
)

∗ δ(t + τj), (4)

where ΠT300(t) is the boxcar function equal to 1 on its

support [0, T300] and equal to 0 elsewhere (typically T300 =

600ms). φ
(k)
1 (t) is finally defined as the mean of all P300

epochs f
(k)
j (t):

φ
(k)
1 =

1

J

J
∑

j=1

f
(k)
j (5)

where φ
(k)
1 = [φ

(k)
1 (0), · · · , φ

(k)
1 (T300 − 1)]T and f

(k)
j =

[f
(k)
j (0), · · · , f

(k)
j (T300 − 1)]T . When convergence is

reached, this recursive scheme leads to b̂ = b(k) which is

the main component of P300 subspace.

To estimate P300 subspace of dimension I higher than

one, an iterative algorithm is proposed. Let bi denote the

i-th estimated component of P300 subspace and let Vi be

the space spanned by {b1, · · · ,bi}. To estimate bi+1, the

recursive scheme described above is applied on xi+1(t),
where xi+1(t) is the observation vector x(t) projected on

V ⊥
i , with V ⊥

i the orthogonal space of Vi (note that EX =

Vi

⊥
⊕

V ⊥
i ).

The iterative algorithm to estimate by deflation P300 sub-

space of dimension I is finally summarized in Algorithm 1.

Algorithm 1 Iterative estimation of P300 subspace.

1: x1(t) = x(t), X1 = X

2: for i = 1 to I do

3: compute QXi
orthonormal base of EXi

4: k = 0, initialisation of φ
(0)
i (t) by an arbitrary form

5: while no convergence reached do

6: k ← k + 1
7: compute M (k) thanks to φ

(k−1)
i (t)

8: compute QM(k) orthonormal base of EM(k)

9: perform singular value decomposition of

QT
Xi

QM(k) =⇒ (b(k), α(k))

10: s
(k)
i (t) = b(k)T

xi(t)

11: epoch s
(k)
i (t) =⇒ f

(k)
j for j ∈ {1, · · · , J} (4)

12: update φ
(k)
i =

1

J

∑J

j=1 f
(k)
j

13: end while

14: bi = b(k), φi(t) = φ
(k)
i (t)

15: project xi(t) on V ⊥
i =⇒ xi+1(t), Xi+1

16: end for

We observed on numerous experiments on real data that

the recursive scheme (steps 5 to 13) typically converges to

a stable solution independently of the initialisation.
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C. BCI classification

In the P300 speller BCI problem, the spelt character is

identified by the detection of a P300 evoked potential related

to a given row and to a given column illuminations for each

sequence. Among the proposed classifiers for BCIs, linear

support vector machines (SVM) [7] are chosen since they

proved to be efficient [8].

However, unlike the previously SVM based classifiers

(e.g. [8]) whose input vector are concatenation of time

courses of P300 potentials recorded on different EEG chan-

nels, the proposed classifier operates on a new representation

vector of the data described below.

For each sequence, composed of a total of 12 intensifi-

cations (6 rows and 6 columns), and for each dimension i

of the estimated P300 subspace (estimated by Algorithm 1

of Section II-B), let α(i) = [α1(i), · · · , α12(i)]
T be the

vector of amplitude coefficients αj(i) between bi x(t) and

φi(t) ∗ δ(t − θj), with θj the timecode of the j-th illumi-

nation. bi and φi(t) are the i-th spatial filter and the i-th

kernel provided by the proposed P300 subspace estimation

respectively. α(i) is thus obtained by

α̂(i) = arg min
α(i)

∥

∥

∥
X bi −Mi α(i)

∥

∥

∥

2

2
, (6)

where X = [x(0), · · · ,x(Ts−1)]T (Ts is the time length of

a sequence). Mi ∈ R
Ts×12 denotes the model matrix whose

j-th column entries are given by φi(t) ∗ δ(t − θj) for all

t ∈ {0, · · · , Ts − 1}. α(i) is finally estimated by

α̂(i) =
(

MT
i Mi

)−1
Mi (X bi) . (7)

Parameter vector pj ∈ R
I corresponding to the j-th illu-

mination is then given by the concatenation of I amplitude

factors αj(i), 1 ≤ i ≤ I: pj = [αj(1), · · · , αj(I)]T . The

main advantage of this new parametrisation if that each

intensification is defined by a vector whose length is I unlike

a time course based parametrisation which requires a longer

parametrisation vector.

Let h(prc) denote the score of a given row or column rc

provided by the output of the SVM for a given sequence of

all rows and columns matrix illumination. The overall score

Hrc(k) of row/column rc after k repetitions is thus given by

Hrc(k) = Hrc(k − 1) + h(prc), (8)

with Hrc(0) = 0. After the k-th repetition, the recognized

character is the one with maximal row and column scores.

III. RESULTS

The proposed methodology, to estimate P300 subspace

(Section II-B) and to recognize the spelt character (Sec-

tion II-C), is applied on the data from the BCI 2003

competition dataset [9] which have been provided by the

Wadsworth Center [10]. The data correspond to 64 EEG

channels sampled at 240Hz. The raw EEG were first filtered

by a 4-order bandpass filter with cut-off frequencies of 1Hz

and 20Hz. Several experiments have been carried out to

analyse the benefit of our approach.

(a) Coefficients α(i) associated with the first component of P300
subspace (i = 1).

(b) Coefficients α(i) associated with the second component of
P300 subspace (i = 2).

Fig. 2. Distribution of amplitude coefficient vector α(i) (7) associated with
the two first components of P300 subspace (i = 1 or 2). The left figures
show coefficients α(i) for spelt characters (red crosses) and for non-spelt
characters (black points). The right figures show the histograms of α(i)
corresponding to spelt/non-spelt characters.

A. P300 subspace estimation

In a first experiment (Fig. 2), the P300 subspace estimation

(Section II-B) was applied on the training database contain-

ing 39 characters. It provides I spatial patterns associated

with I temporal kernels {
(

bi, φi(t)
)

}1≤i≤I . These I couples

were then used to estimated coefficients {α(i)}1≤i≤I (7)

for the 31 spelt characters from the testing database. Coef-

ficients α(i) are plotted in Fig. 2 in a concatenated form

(i.e. concatenation of coefficients α(i) obtained for each

of the 31 characters). As expected, one can see that co-

efficients α(i) are larger when they correspond to target

intensifications (red crosses, white histogram) than when they

correspond to standard illuminations (black points, black

histogram). This experiment shows that parameter vector

pj = [αj(1), · · · , αj(I)]T could be used to the prediction of

spelt characters. However, one can see that there is an overlap

between the distribution of coefficients α(i) corresponding

to spelt characters (white histograms) and the distribution

of coefficients α(i) associated with non-spelt characters

(black histograms). This stresses that a single sequence is

not sufficient to perfectly predict the spelt character: as a

consequence, several sequences for each spelt characters are

necessary to increase the performance.

B. BCI classification

In a second experiment, we compare the prediction results

of the proposed method to those obtained by different

methods. The results of the classification are summarized

in Tab. I, where are given the number of misspellings in the
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TABLE I

NUMBER OF MISSPELLINGS IN THE TEST WORDS (31 CHARACTERS) WITH RESPECT TO THE NUMBER OF SEQUENCES AND TO THE ALGORITHM.

Number of sequences
1 2 3 4 5 10 15

10 preselected channels1 22 17 12 10 5 4 2

10 preselected channels2 16 14 11 4 4 1 0

optimal relevant channels and 1 SVM per word [8] 4 2 1 0 0 0 0

First dimension of P300 subspace (estimated by algorithm 1) 8 8 5 4 3 1 0

2 first dimensions of P300 subspace (estimated by algorithm 1) 7 7 2 2 0 0 0

3 first dimensions of P300 subspace (estimated by algorithm 1) 7 5 1 0 0 0 0

4 first dimensions of P300 subspace (estimated by algorithm 1) 7 5 1 0 1 0 0

5 first dimensions of P300 subspace (estimated by algorithm 1) 8 5 1 0 1 0 0

10 first dimensions of P300 subspace (estimated by algorithm 1) 10 7 3 0 1 0 0

test words (corresponding to a total amount of 31 characters)

with respect to the number of sequences and to the algorithm.

In the two first tests, two sets of 10 channels are manually

preselected. In each case, the classifier is a single linear SVM

whose input parameter vector is the concatenation of 667ms

time courses corresponding to the preselected channels.

One can see the need of an appropriate channels selection:

a wrong selection of channels dramatically decreases the

performance as shown in table. I (two first rows).

The proposed method was then applied to estimate the

P300 subspace (Section III-A), and a single linear SVM

was trained on parameter pj (Section II-C). One can see

that the proposed method using only the first component

of P300 subspace outperforms the use of 10 preselected

channels. This highlights the benefit to project the raw EEG

on the P300 subspace before the word prediction. Note that

if only the first component of the P300 subspace is used,

the parameter vector pj reduces to single scalar αj(1) as

shown in Fig. 2(a) and the linear SVM only selects the row

and the column with largest αj(1). Moreover, only a few

number of P300 subspace components are needed to provide

good performance: indeed with the three first components of

P300 subspace, all the words in the test set can be recognized

correctly with only 4 sequences. Note that using more than

3 components slightly increases the number of misspellings.

Finally, the method proposed by Rakotomamonjy et al. [8]

sightly outperforms the proposed method. However, the

method presented in [8] uses a more complicated classifier to

take into account the possible variabilities in EEG records: it

is based on as many SVMs as words in the training database

(in this case it thus uses 11 different SVMs) and for each

SVM a selection of channels is applied.

IV. CONCLUSION

The proposed unsupervised method provides a simple and

dedicated scheme to estimate P300 subspace. Indeed, given

the time indexes of illuminations, the proposed algorithm 1

iteratively estimates the main components of P300 subspace.

Moreover, the proposed scheme significantly reduces the

1The 10 preselected channels are: FPZ, F3, Fz, F4, C3, Cz, C4, P3,
Pz, P4.

2The 10 preselected channels are: Fz, Cz, Pz, Oz, C3, C4, P3, P4,
PO7, PO8.

dimension of the parameter vector used to the prediction

word. The proposed approach has been shown to be suitable

for a BCI and gives results that compare favourably to the

state of the art. Unlike the method presented in [8] which

only selects channels (0 or 1 weightings) that are important

for the detection of event-related potentials, the proposed

algorithm also automatically and optimally weights all the

channels according to their relative relevance.

To further improve the classification performance, it can

be interesting to use several linear SVMs which allow to deal

with the variability of EEG responses as in [8].
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J. R. Wolpaw, A. Schlögl, C. Neuper, G. Pfurtscheller, T. Hinterberger,
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