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ABSTRACT

We consider the design of a pair of time-domain filters

to achieve target signal cancelation in a multi-source envi-

ronment. The problem is formulated as a minimization of

a sum squared error cost function with respect to the pair

of finite impulse response cancelation filters. Direct mini-

mization is achieved through an alternating gradient descent

based method, whereas a novel method based on the method

of principal angles is proposed which exploits the singular

value decomposition. Simulation studies show that the gra-

dient descent method suffers from slow convergence but this

is overcome by the method based on principal angles which

also achieves a lower cost than the gradient descent approach.

The cancelation filters are then combined with an adaptive fil-

tering scheme to address a video-informed audio source sep-

aration problem and preliminary results suggest good perfor-

mance in terms of objective measures.

Index Terms— beamforming, method of principal an-

gles, speech source separation, cancelation filter estimation

1. INTRODUCTION

Reverberant, noisy and multi-source environments pose a sig-

nificant challenge in signal processing systems particularly in

real-time applications. Often multi-sensor array systems are

required to enhance or cancel a target signal source by means

of spatial filtering so that the target, or other measured signals,

can be processed more efficiently.

A beamformer, which spatially filters measurements from

an array of sensors (e.g. microphones) is often employed

to achieve such selectivity [1, 2, 3]. With broadband signal

sources, such as speech, such beamformers are commonly

implemented in the frequency domain. In some applications,

however, the size of the array can be limited, so only two sen-

sors can be employed. In this context, in [1], a frequency

domain generalized sidelobe canceller (GSC) has been pro-

posed. The processing at each discrete frequency, f , in this

GSC is represented in Figure 1. On the left-hand side of the

diagram is a lattice structure which at the output of the adder

enhances the target signal, whereas at the bottom, due to the

subtraction, blocks the target signal so that the input to the

adaptive filter nominally contains only other background sig-

nals.

Such a frequency domain approach however assumes that

the length of the discrete Fourier transform (DFT) used to

convert the time-domain sensor measurements into the fre-

quency domain is significantly longer than the impulse re-

sponses of the filters used to model the propagation between

the sources and the array sensors. In contrast, in order that

the adaptive filter in Figure 1 can converge there must be a

sufficient number of frequency domain blocks, indexed by t,
and this requires the impulse responses modelling the propa-

gation environment to be fixed throughout this period. These

assumptions are likely to be violated in many applications

therefore our work is focused on two sensor time-domain type

GSC processing so we need to design a target signal blocking

operation in the time-domain. Operation entirely in the time-

domain additionally avoids complex valued signal operations

and thereby also has computational advantage in real-time im-

plementation.

In the paper we therefore present two methods to estimate

a pair of time-domain finite impulse response filters which

suppress any undesired signal components which may pass

through the blocking channel due to steering error. This pair

of filters helps ensure that energy of the canceled signal, after

the blocking vector has been applied, is as small as possible

(denoted as u(t, f) in Fig. 1), we refer to this pair of filters as

cancelation filters in the paper.

The problem formulation is described in Section 2.1, an

alternating gradient descent method is introduced in Section

2.2, afterwards the method of principal angles is introduced in

Section 2.3. Then, results for an evaluation of both methods

are presented is Section 3.1. Finally, the method of principal

angles is applied to a video-informed audio source separation

problem which is included in Section 3.2.
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Fig. 1: Two channel generalized sidelobe canceler in the frequency domain. The signal u(t, f) = bH(f)x(t, f) for which the

target signal has been blocked, where b = 1/2[ejΔf/2,−e−jΔf/2]H is the blocking vector, x(t, f) is a vector of the short-time

Fourier transforms of the time-domain quantities x1,2, w(t, f) is the complex parameter in the adaptive filtering stage, Δf is

the ‘uncertainty in angle arrival’ which is the time shift to correct for delay in signal arrival, t is the time block index, f is the

frequency bin index and (·)H is the Hermitian (complex conjugate) transpose. Further details can be found in [1].

2. METHOD

2.1. Problem Formulation

The observation at each sensor of a two-sensor array can be

modeled in the general case in the time-domain as a convolu-

tive mixture from each source of the form:

xi(k) =
N∑

j=1

hij(k) ∗ sj(k) + ni(k), i = 1, 2 (1)

where sj is the speech signal generated by the j-th source,

hij is the filter that models the effect of the environment be-

tween the j-th source and the i-th sensor, k is the discrete

time index, ni is additive zero mean noise uncorrelated with

the speech signals, xi is the detected signal at the i-th sensor,

∗ denotes convolution and N is the number of sources. For

convenience the noise, ni(k) is dropped for the remainder of

the paper. Throughout the paper source number j = 1 is the

target source that is to be canceled.

In the training phase the sensors are pre-steered so that

h11 ≈ h21 as this gives the system the best chance of cancel-

ing the target by using the raw signals from the sensors. In an

acoustic environment application this would be implemented

by exploiting the geometery of the acoustic environment, by

ensuring the distances between the target signal source and

the sensors were equidistant, so that in terms of early rever-

beration the IRs would be essentially the same. The canceling

filters would then correct for the fact that h11 ≈ h21.

The core problem formulation is to find a pair of canceling

filters (ĝ1 and ĝ2), so that: h11 ∗ ĝ1 −h21 ∗ ĝ2 ≈ 0. An error

vector is therefore formulated as:

ε1 = (X1g1 −X2g2) (2)

where X1 and X2 are the convolution matrices, whose ele-

ments are formed from x1 and x2 signals as shown in Figure

3, which themselves are convolutions of the target source with

h11 and h21 respectively assuming the other sources are silent

during training.

2.2. Alternating Gradient Descent Method

A cost function for the alternating gradient descent method

(GD method) is derived from the error vector from Eq. (2),

which yields:

J1 = ||ε1||22, {ĝ1, ĝ2} = arg min
g1,g2

J1 (3)

The assumption is made that X1 �= X2 (i.e. they differ suffi-

ciently so that Eq. (2) cannot be factorized as X1(g1 − g2)).
Taking the partial derivatives of J1 with respect to the filters

to be estimated g1 and g2, yields:

∂J1
∂g1

= 2XT
1 X1g1 − 2XT

1 X2g2 (4a)

∂J1
∂g2

= 2XT
2 X2g2 − 2XT

2 X1g1 (4b)

where (·)T denotes the vector transpose operator. To mini-

mize the cost function, J1, the two expressions for the gradi-

ent, ∂J1

∂g1
and ∂J1

∂g2
are included in a gradient descent scheme,

which updates filter weights according to a change propor-

tional to the gradient of the cost function. Thus, this yields

the update equations for the estimated filters:

ĝ�+1
1 = ĝ�

1 + μ(XT
1 X2ĝ

�
2 −XT

1 X1ĝ
�
1) (5a)

ĝ�+1
2 = ĝ�

2 + μ(XT
2 X1ĝ

�+1
1 −XT

2 X2ĝ
�
2) (5b)

where � denotes the iteration number and μ denotes the step

size. Notice, that in Eq. (5a) ĝ2 is fixed and the update is

performed with respect to ĝ1, whereas the reverse applies in

Eq. 5b, hence this is an alternating descent. The scale factor

of 2 has been factored out and absorbed by μ. The condi-

tion ||ĝ2||2 = 1 is applied so that the trivial zero solution is

avoided, equally ||ĝ1||2 = 1 could also be applied, though

only one condition is used so the remaining filter has more
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freedom to reach its optimized value. This is achieved by

adding the update ĝ�+1
2 = ĝ�+1

2 /||ĝ�+1
2 || after Eq. (5b).

This constrained optimization corresponds to modifying

the cost J1 = J1 + λ(||g2|| − 1), where λ is a Lagrange mul-

tiplier. Such an approach to canceler design has been adopted

in stereophonic echo cancelation [4], and has been known to

exhibit poor convergence due to the correlation between the

two signal channels.

2.3. Principal Angles Method

In a similar fashion to the previous method ĝ{1,2} are esti-

mated during a training phase. During the training phase only

the target signal source is active whilst the other sources are

assumed to be silent.

The novelty in our work is that the method of principal

angles (PA method) is used to find the filter estimates (ĝ1 and

ĝ2), as described in [5], which should overcome the slow con-

vergence in the gradient descent method. To use the method

of principal angles we need an orthonormal basis for the con-

volution matrices; taking the QR decomposition of X1 and

X2, the error vector is rewritten as;

ε2 = (Q1g̃1 −Q2g̃2) (6)

where g̃1 = R1g1 and g̃2 = R2g2. The minimizers of a new

cost function are then found as:

J2 = ||ε2||22, {ĝ1, ĝ2} = arg min
g̃1,g̃2

J2 (7)

To find the principal angles and principal vectors of the

orthonormal subspaces Q1 and Q2, we take the singu-

lar value decomposition of QT
1 Q2, so that [U,Σ, V T ] =

SV D(QT
2 Q1). The constraints ||g̃1||2 = 1 and ||g̃2||2 = 1

are inherently introduced to the method by taking the SVD of

QT
2 Q1, which avoids the trivial solution ĝ1 = ĝ2 = 0. Let

UQ1 = [f11 | . . . |fp1 ] (8a)

V Q2 = [f12 | . . . |f q2 ] (8b)

be the column partionings of UQ1 and V Q2, where

[f11 | . . . |fp1 ] and [f12 | . . . |f q2 ] are the principal vectors of the or-

thonormal bases Q1 and Q2 and, p and q are the dimensions

of the matrices X1 and X2 respectively (we ensure that X1

and X2 are the same size so; p = q). Assuming that there are

two unit vectors a and b, so that; f11 = Q1a and f12 = Q2b.

Thus,

fT1 f2 = aTQT
2 Q1b = aT (UΣV T )b. (9)

This function is maximized by setting a = u1 and b = v1,

where the superscript, (·)1, corresponding to the index of the

largest diagonal value of Σ (denoted by σ1 which in turn cor-

responds to the smallest angle between the orthonormal bases

Q1 and Q2). To find the principal vectors it follows that;
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Fig. 2: Convergence performance of the GD method. The

strong correlation between both sensor signals x1 and x2,

as they share a common source convolved with similar IRs,

cause slow convergence. Also included is the cost function

value achieved by the PA method which is much nearer zero.

a = Q1u = f11 , and b = Q2v = f12 . The equalizing fil-

ters are the columns of U and V which correspond to σ1 (as

they maximize Eq. (9)), multiplied by the inverse of R1 and

R2 to allow for the basis change by the QR decomposition,

thus:
ĝ1 = R−1

1 v1 (10a)

ĝ2 = R−1
2 u1 (10b)

We next compare the performance of the two approaches.

3. RESULTS

3.1. Cancelation Filter Performance

The cancelation filter methods were compared by calculat-

ing the value of the respective cost functions with the esti-

mated filter vectors for the PA method and the GD method, i.e.

||X1ĝ1 −X2ĝ2||2 for both methods. Binaural room impulse

responses (BRIRs) from a classroom were measured with a

dummy head between two microphones [6] and then resam-

pled to 8kHz. These BRIRs and a white noise input are used

to train the cancelation filters, where the target signal source

was positioned at 0◦, and at distances of 15cm, 40cm and 1m

from the array as marked in Table 1.

Strong correlation between the sensor signals x1 and x2

causes slow convergence for the GD method as shown in Fig.

2, normalized values of the cost function J1 are given after

8100 iterations of the update equations where the cancelation

filters’ lengths are 810 taps. To train the cancelation filters

10000 samples of white noise were used, this number was

chosen to limit the size of the of X1 and X2 to save on com-

putational load.

Table 1 clearly shows that the principal angles method

offers better performance than the GD method, values are

shown for normalized cost, that is to say the raw value from
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the cost function divided by the length of the estimated fil-

ter. The slow convergence of the alternating GD method also

reduces performance, lower normalized cost function values

could be achieved if the GD method was run for more itera-

tions, but this would introduce a delay in real-time systems.

This is an advantage of the PA method as it finds the optimal

filters without the need of update iterations.

Table 1: Values of the cost function with estimated filters.

Filters of length 810 were estimated for both methods.

Distance (m) PA (normalized cost) GD (normalized cost)

0.15 4.04×10−8 1.42×10−2

0.40 4.04×10−8 1.38×10−2

1.00 4.04×10−8 1.38×10−2

3.2. Video-Informed Source Separation Application

In this section the PA method with an adaptive filtering

scheme is used as an alternative to classical higher-order

statistics source separation methods (such as independent

component analysis [7]) to address the cocktail party problem

[8]. An array of two microphones (sensors) are pre-steered

towards the target so that IRs between a speaker and the two

microphones, which are positioned close together (5cm), are

approximately equal, h11 ≈ h21, as the microphones are the

same distance from the target source.

The microphones are assumed to be pre-steered by video

information which provides the location of the target speech

source. In practice a microphone array would be orientated

towards the target source using a mechanical device. The

use of video information is much more robust to background

noise than an audio based method for source localization.

More emerging robotic human machine interfaces are likely

to be equipped with cameras. The extraction of localization

information from video information for pre-steering the array

is outside the scope of this method, but further details can be

found in [9, 10, 11].

In the training phase, the same BRIRs and white noise in-

put as before are used to create mixtures at each microphone,

where only the target source is present. The estimated cance-

lation filters, ĝ{1,2}, are found for an angle of 0◦ and distances

of 0.15m, 0.40m and 1.00m from the microphone array. After

the training phase, the noise reference source (sref ) is then

added at 75◦ and 1m from the array.

At a particular distance, the target source (ŝtar) is can-

celed from the mixture leaving the other source (interference),

ŝref . The canceled target source ŝtar is then recovered by

using ŝref as a noise reference in a normalized least mean

square (NLMS) adaptive filtering scheme [12]. A diagram of

the full system is given in Fig. 3, including the mixing pro-

cess.

Physically both the target source and reference source are

both stationary. Source speech signals were taken from the

TIMIT database, where the target source is a male voice and

the noise reference voice is female. Six TIMIT files were

concatenated to achieve the desired length.

The method is evaluated in the two-microphone two-

source scenario, Table 2. Peak and average performance

values for signal-to-interference (SIR) [13] and perceptual

evaluation of speech quality (PESQ) [14] are given for ŝtar.

Table 2: Audio Source Separation: Enhancement improve-

ment for mixtures with BRIRs, when filter lengths for ĝ{1,2}
are 1300 at 8kHz and the length of ŵ is 6500, source duration

of 4 mins 7 secs and μ = 0.275. PESQ values for the unsepa-

rated mixtures are 0.96 and 1.00 for x1 and x2 respectively.

Distance (m) SIR (dB) PESQ (0-5)

0.15
Peak 16.13 4.22

Mean 8.94 2.47

0.40
Peak 15.82 4.23

Mean 8.18 2.49

1.00
Peak 14.29 3.21

Mean 7.13 1.66

The filters ĝ{1,2} and the room impulse responses cause the

outputs of the algorithm ŝtar (and ŝref ) to be filtered versions

of the original sources. As expected both performance mea-

sures degrade with increasing target source distance. But sig-

nificant SIR is achieved with a peak improvement of 16.13dB

(note that as the target and interfering source have the same

variance at the microphones the input SIR is 0dB). The addi-

tional filtering on ŝtar causes low average PESQ values, how-

ever the effect can be reduced by additional post-processing,

as in [15]. The improved SIR ratios also suggest that signal

leakage is not a major problem in the operation of the adaptive

filter.

4. CONCLUSION

Two methods have been proposed for designing time-domain

cancelation filters. The more conventional alternating gradi-

ent descent based method was shown to converge slowly and

to perform badly in terms of the cost function value, even af-

ter a significant number of update iterations. An alternative

novel method of principal angles was introduced which min-

imizes the cost function without the need of iterative updates

and gives a much lower cost function value.

Both methods are formulated in the time-domain to en-

sure that any IR of a particular environment can be adequately

covered by the cancelation filters.

In the source separation context, the method may be used

as a stand-alone source separation method, for a two-source

two-microphone scenario, or can be used as a pre-processing

stage for a more conventional blind source separation algo-

rithm in the under-determined case. where there are more

sources than sensors.
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ŝref
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an NLMS adaptive filtering stage. The overall outputs are ŝtar and ŝref . Thicker hollow arrows indicate information flow in a

mechanical/video system which is used to pre-steer the sensor array.

Future work will include implementing the canceling

filters from the principal angles method in real-time and ex-

panding this method so that it becomes a pre-processing stage

to a conventional source separation algorithm for acoustic

sources.

For the audio source separation application, possible

changes include removing the training phase and replacing

it with a voice activity detector (VAD) [15], which detects

silent periods in speech sources.
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