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Abstract

This study is focused on detection of fetal QRS
complexes in multichannel ECG signals recorded from
mother’s abdomen, containing both fetal and maternal
ECGs. Assuming different values for maternal and fetal
heart rates, the proposed method relies on a deterministic
tensor decomposition method, which aims at deterministic
blind separation of sources having different symbol rates.
In the ECG context, due to the quasi-periodic nature of
ECG signal, maternal ECG R-peaks are firstly detected
from the mixture to identify maternal beats as maternal
ECG symbols. Then the maternal ECG beats are stacked
into a three-dimensional array. Decomposition of this ten-
sor yields three loading matrices that are now used to re-
construct the maternal ECG. The residue of subtraction
of the maternal ECG estimate from the original mixture
is then used to detect fetal QRS complexes. The obtained
average scores of event 4 and 5 on the set B of Physionet
Challenge 2013 data are 1514.59 and 57.01, respectively.

1. Introduction

Congenital heart disease is the most common type of
birth defect [1] and the leading cause of birth defect-related
deaths [2]. Approximately, one out of 125 babies born
each year have some form of congenital heart defects [3].
Since heart defects originate in the early weeks of preg-
nancy when the heart is forming [3], the regular monitor-
ing of the fetal heart and the early detection of cardiac ab-
normalities may help obstetrics and pediatric cardiologist
to prescribe proper medications in time, or to consider the
necessary precautions during accouchement. The electro-
cardiogram (ECG) signal may provide useful information
about the fetus’ heart condition for detecting the fetus at
risk of damage or death in the uterus. However, despite
of the rich literature in the field of adult ECG processing,
the extraction of fetal ECG (fECG) from mixture of mater-
nal ECG (mECG), fECG, and other interference sources
remains a difficult problem for the biomedical engineering
community. This is due to much lower amplitude of fECG

compared with mECG.

Because of severe weakness of fECG, many attempts
have been made to improve the performance of fully blind
source separation methods through using a priori infor-
mation about cardiac signals, such as their quasi-periodic
structure that can be realized by R-peak detection. As a
result, detection of fetal R-peaks (or QRS complex) is an
essential step in the fetal ECG extraction methods in which
quasi-periodic nature of ECG signal is exploited (e.g. peri-
odic component analysis (πCA) [4] and extended Kalman
filtering (EKF) framework in [5] and [6]). In these meth-
ods, it is assumed that the fetal R-peaks are either already
provided using another modality (e.g. using a sound sen-
sor) or directly estimated from ECG mixture. As it has
been mentioned in [6], the latter can be done by using a se-
quential EKF algorithm. In this case, maternal R-peaks are
easily detectable from the mixture by an automatic peak
search algorithm, while detection of fetal R-peaks is not
fully automatic. In this method, because of low amplitude
of fetal ECG, maternal ECG is first eliminated from the
mixture by the EKF framework, then the residual signal is
used for fetal R-peaks detection. However, efficient elim-
ination of maternal ECG requires careful selection of cen-
ter of Gaussian functions, which is done manually by vi-
sual inspection of maternal ECG mean. The simplest way
to automatize mECG elimination might be to reconstruct
mECG by concatenating maternal ECG mean at maternal
R-peaks. However, in this case all mECG beats are as-
sumed to have exactly same amplitudes. This assumption
can significantly impact the performance of maternal ECG
elimination.

The proposed method in this paper, which is fully au-
tomatic, can be used to recover amplitudes of different
beats of mECG to efficiently eliminate mECG. The rest
of the paper is organized as follows: In Section 2 the re-
lated background of the proposed method is recalled. The
proposed method is explained in detail in Section 3. Sec-
tion 4 is devoted to show the performance of the proposed
method on an actual fECG dataset. Finally, our conclu-
sions are stated in Section 5.



2. Background

Higher-order tensors have gained increasing importance
as they can be used to represent higher order cumulants
that are exploited in independent component analysis [7]
and have been used successfully in blind source separation
(BBS). In addition, they are natural representations of mul-
tidimensional (higher than 2) data than matrices in many
practical applications (e.g., in chemistry, biomedical en-
gineering, and wireless communications). A fundamental
challenge in these applications is to find informative and
sparse representations of tensors, i.e., tensor decomposi-
tions. Tensor decompositions take into account informa-
tion about different variables of the data, such as, for ex-
ample, spatial, temporal and spectral information, and may
provide links among the various extracted factors or latent
variables with physical or physiological meaning and in-
terpretation [8].

In [9], a parallel deflation procedure based on a deter-
ministic tensor decomposition has been proposed to ad-
dress the problem of underdetermined (i.e. more sources
than sensors) BSS in the cyclostationary context. The basic
approach consists in constructing a tensor by synchroniz-
ing on the symbol rate of a certain source, and decompos-
ing the tensor using the canonical polyadic (CP) decompo-
sition [10] to extract the characteristics of the source.

The method in [9], assumes that each of the q =
1, . . . , Q sources of interest has periodic symbols. For
each source, it then builds a three-way tensor with di-
mensions space, symbol period, and temporal pattern from
measurement data that is recorded with M sensors over a
certain time interval. To this end, for the q-th source, Lq

symbol periods composed of Tq time samples are identi-
fied from the measurements, yielding a data matrix of size
M × Tq for each symbol period. By stacking these ma-
trices along the second dimension of a three-dimensional
array, one obtains the tensor Y (q) ∈ CM×Lq×Tq .

The deterministic blind separation of sources having
different symbol rates, proposed in [9] has been adopted
and customized to ECG signal in this study for estimating
mECG amplitude in each beat to better eliminate mECG
from mixture.

3. Methods

In the style of [9], we exploit the quasi-periodic nature
of the ECG signal to construct a data tensor with dimen-
sions space, ECG beat, and time from the M -dimensional
measurements of mECG and fECG mixtures. To this end,
we identify L mECG beats of length T of the measured
mixture. This is achieved based on detection of maternal
R-peaks to identify and synchronize the signals of differ-
ent heart beats (each beat corresponds to the recognized
pattern of the quasi-periodic source). Please note that

the detection of maternal R-peaks is automatic and rather
straightforward. The R-peaks are found from a simple
peak search in windows of length T , where T corresponds
to the R-peak period calculated from approximate ECG
beat-rate. R-peaks with periods smaller than T

2 or larger
than T are not detected. Finally, for the L mECG beats,
one can extract an M × T data matrix from the measure-
ments. These matrices are then stacked along the second
dimension of the tensor Y ∈ CM×L×T.

Assuming that an mECG can be described by R ∈ N
components that are identical for all mECG beats except
for changes of amplitude, the elements of the tensor can be
written as

Yijk =

R∑
r=1

airsjrhkr + bijk. (1)

The first term in the right-hand side of (1) corresponds
to the canonical polyadic (CP) decomposition of a tensor
where air, sjr, and hkr are the elements of three loading
matrices A ∈ RM×R, S ∈ RL×R, and H ∈ RT×R, re-
spectively [10]. The loading matrices correspond to the
mixing matrix related to mECG (A), the matrix of mECG
beat amplitudes (S), and the matrix containing the tempo-
ral pattern of mECG beat (H) that characterize the mix-
ture of the mECG source. The second term contains noise
and interference from the desynchronized signals of other
sources.

In practice, one can obtain estimates for the mixing ma-
trix, the mECG beat amplitudes, and the patterns of mECG
components by decomposing the tensor using the follow-
ing criterion that optimizes the classical CP cost function:

{
Â, Ŝ, Ĥ

}
= argmin{A,S,H}

∑
i,j,k

∥∥∥∥∥yijk −
R∑

r=1

airsjrhkr

∥∥∥∥∥
2

F

.

(2)
An important advantage of the CP decomposition in

comparison to matrix decompositions, such as principal
component analysis (PCA), is that it is essentially unique
[11,12] up to scale and permutation indeterminacies under
mild conditions on the tensor rank, without imposing addi-
tional constraints such as orthogonality or independence.
As has been shown in [9], if A, S, and H have full rank
and T ≥ R, L ≥ R (i.e., if the number of symbols and
the number of time samples per symbol are larger than the
number of components R to be extracted), then M = 2
sensors are enough to blindly separate R components.

Decomposition of the tensor via the optimization prob-
lem in (2) yields three loading matrices A, S, and H. Us-
ing these matrices mECG is reconstructed and projected
back to the sensor domain to be subtracted from the mix-
ture. The residue of the subtraction, i.e. rough fECG es-
timate, is then used to detect fetal R-peaks using the auto-



matic peak search algorithm that was used for detection of
maternal R-peaks.

4. Data

The non-invasive fetal electrocardiogram dataset in the
Physionet/Computing in Cardiology Challenge 2013 [13]
is used in this study to show the performance of the pro-
posed method. This challenge is dedicated to develop
accurate fetal R-peak detection methods. Data for the
challenge consist of a collection of one-minute fetal ECG
recordings. Each recording includes four non-invasive
abdominal signals. The data were obtained from multi-
ple sources using a variety of instrumentation with dif-
fering frequency response, resolution, and configuration,
although in all cases they are presented as 1000 samples
per signal per second. In each case, reference annotations
marking the locations of each fetal QRS complex were
produced, usually with reference to a direct fECG signal,
acquired from a fetal scalp electrode. The direct signals
are not included in the challenge data sets, however [13].

5. Results

Figure 1 shows mixed ECG recordings on channels 1 to
4 of the namely a22 dataset and the corresponding stacked
mECG beats from these channels. The mECG rank for
this measurement has been considered to 2 and the tensor
is constructed with parameters M = 4, L = 78, T = 780.

Figure 2 illustrates the performance of the proposed
method on ten seconds of the first channel of the recording
a22. As it is seen, the proposed method is favorably able
to detect fetal R-peaks even in coinciding epochs, in which
maternal and fetal ECG waves fully overlap in time. This is
particularly noticed between t = 5s and t = 6s, where some
parts of fECG signal have been corrupted after mECG sub-
traction.

As it has been mentioned in the previous section, the
proposed method is able to extract components of the sig-
nal of interest using only two channel recordings. Figure
3 shows the efficiency of the proposed method in detec-
tion of fetal R-peaks where only channels 1 and 2 of the
recording a12 are utilized to estimate and remove mECG.

The obtained average scores of event 4 and 5 on the set
B of Physionet Challenge 2013 data, reported by the chal-
lenge organizers, are 1514.59 and 57.01, respectively.

6. Conclusions

Most of the promising methods in fetal ECG extraction
field need fetal R-peak positions as a key prior information.
Using R-peak positions, the quasi-periodic nature of ECG
signal can be exploited. Fetal R-peak positions can also be
independently used for R-R interval and heart-rate studies.
In this paper, a deterministic tensor decomposition method
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Figure 1. Extraction of mECG components from the
namely a22 dataset of the Physionet Challenge 2013. Up
to down: recorded mixed ECG signals on the channels 1
to 4, stacked mECG beats arranged in the tensor from the
channels 1 to 4, normalized extracted mECG components
via classical CP.

was adopted and customized to ECG signal to efficiently
remove mECG signal from mixture of mECG and fECG
for detection of fetal R-peaks. The proposed method can
be used with only two electrodes, which is a key feature
for a monitoring system that can highly affect the systems
price, convenience and portability.
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Figure 2. Fetal R-peaks detection via tensor decomposi-
tion on the recording a22 of the Physionet Challenge 2013
using channels 1 to 4. Up to down: mixed ECGs on chan-
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in green squares and estimated fetal R-peaks are shown in
red circles.

[4] Sameni R, Jutten C, Shamsollahi MB. Multichannel Elec-
trocardiogram Decomposition using Periodic Component
Analysis. IEEE Trans Biomed Eng Aug. 2008;.

[5] Sameni R. Extraction of Fetal Cardiac Signals from an
Array of Maternal Abdominal Recordings. Ph.D. the-
sis, Sharif University of Technology – Institut National
Polytechnique de Grenoble, July 2008. Available On-
line: http://www.sameni.info/Publications/
Thesis/PhDThesis.pdf.

[6] Niknazar M, Rivet B, Jutten C. Fetal ECG extraction by
extended state Kalman filtering based on single-channel
recordings. Biomedical Engineering IEEE Transactions on
2013;60(5):1345–1352.

[7] Comon P. Contrasts, independent component analysis, and
blind deconvolution. International Journal of Adaptive Con-
trol and Signal Processing 2004;18(3):225–243.

[8] Zhou G, Cichocki A. Canonical polyadic decomposition
based on a single mode blind source separation. Signal Pro-
cessing Letters IEEE aug. 2012;19(8):523 –526.

[9] Almeida A, Comon P, Luciani X. Deterministic blind sepa-
ration of sources having different symbol rates using tensor-
based parallel deflation. In Proceedings of the 9th interna-
tional conference on Latent variable analysis and signal sep-
aration, LVA/ICA’10. Berlin, Heidelberg: Springer-Verlag,
2010; 362–369.

−150

−100

−50

0

50
Recorded signal (channel 1)

R
el

at
iv

e 
am

pl
itu

de

−150

−100

−50

0

50
Maternal ECG estimate via classical CP

R
el

at
iv

e 
am

pl
itu

de

0 1 2 3 4 5 6 7 8 9 10
−50

0

50
Rough fetal ECG estimate

R
el

at
iv

e 
am

pl
itu

de

Time [s]

Figure 3. Fetal R-peaks detection via tensor decomposi-
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using only channels 1 and 2. Up to down: mixed ECGs on
channel 1, reconstructed maternal ECG via classical CP,
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are shown in green squares and estimated fetal R-peaks
are shown in red circles.
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