
Fetal Electrocardiogram R-peak Detection using Robust Tensor Decomposition
and Extended Kalman Filtering

Mahsa Akhbari1,2, Mohammad Niknazar2, Christian Jutten2,
Mohammad B. Shamsollahi1, Bertrand Rivet2

1 BiSIPL, Sharif university of Technology, Tehran, Iran, 2 GIPSA-Lab, Grenoble, France

Abstract

In this paper, we propose an efficient method for R-peak
detection in noninvasive fetal electrocardiogram (ECG)
signals which are acquired from multiple electrodes on
mother’s abdomen. The proposed method is performed in
two steps: first, we employ a robust tensor decomposition-
based method for fetal ECG extraction from mixtures of fe-
tal and maternal ECGs; then a method based on extended
Kalman filter (EKF) is used for fetal R-peak detection. In
order to obtain a rough estimate of fetal ECG, a weighted
tensor decomposition method is utilized to capture weak
traces of fetal ECG mixed with maternal ECG and noise.
In this method, it is assumed that maternal and fetal heart
rate values are different. After fetal ECG extraction, a re-
cently introduced Bayesian framework for ECG fiducial
point extraction is used. In this method each ECG wave
(P, QRS and T) has a separate state in the EKF formula-
tion. Each parameter of the Gaussian functions used for
modeling each ECG wave is considered as a simple auto-
regressive (AR) model and is estimated via the EKF. The
results show that the proposed method is efficiently able to
estimate the location of R-peaks of fetal ECG signals. The
average score of our proposed method for the PhysioNet
Challenge 2013 on set B from entry 1 are 1326.21 and
45.06 for event 4 and 5, respectively, which are better than
the average score for sample submission physionet2013.m
(available at PhysioNet) on set B which were 3258.56 and
102.75 for event 4 and 5 respectively.

1. Introduction

Electrocardiogram (ECG) records the electrical activity
of heart and is a noninvasive, safe and quick tool for car-
diac disease diagnosis. During the recent years there have
been significant advances in adult clinical electrocardiog-
raphy but analysis of fetal ECG (fECG) is still in its in-
fancy. Some methods have been proposed for processing
the fetal ECG using the direct fetal ECG which is acquired
from a fetal scalp electrode during delivery. As acquiring

the direct fECG is invasive and can be done only in labor
time, extraction of noninvasive fECG can be of great inter-
est. Since the noninvasive fECG is highly contaminated
by maternal ECG (mECG) and other artifacts, develop-
ing a method that can extract fetal ECG from mixture of
mECG, fECG, and other interference sources is underway
by biomedical engineering communities.

Among the several methods addressing this problem
there are many methods (such as periodic component anal-
ysis (πCA) [1] and extended Bayesian filtering framework
[2]) that use fetal R-peak positions. Indeed, these meth-
ods utilize fetal R-peak positions as prior information for
exploiting the quasi-periodic nature of this signal.

In this paper, we propose an efficient method for R-
peak detection in noninvasive fetal ECG signals which are
acquired from multiple electrodes on mother’s abdomen.
The proposed method is performed in two steps: first,
we employ a robust tensor decomposition-based method
to roughly extract fetal ECG from mixtures of fetal and
maternal ECGs; then a method based on extended Kalman
filter (EKF) is used for fetal R-peak detection.

The ECG Kalman filtering framework is recalled in Sec-
tion 2. In Section 3, we explain our proposed method for
fetal ECG extraction and R-peak detection. In Section 4,
we present the results of applying the proposed method on
actual noninvasive fetal ECG signals. Finally, our discus-
sion and conclusions are stated in Section 5.

2. ECG Kalman Filtering Background

McSharry et al. [3] have proposed a synthetic ECG gen-
erator, which is based on a nonlinear dynamic model. De-
tails of this model can be found in [3]. Sameni et al. [4]
transformed these dynamic equations into the polar form to
obtain a simpler compact set, with the simplified discrete
form shown as:{

φk+1 = (φk + ωδ) mod(2π)

zk+1 = −
∑

i δ
αiω
b2i

∆θi exp(−∆θ2
i

2b2i
) + zk + η

(1)

where ∆θi = (φk − θi)mod(2π), δ is the sampling time,
η is a random additive noise that models the inaccuracies



of the dynamic model and the summation over i is taken
over the number of Gaussian functions used for modeling
the shape of the ECG. The αi, bi and θi terms in (1) corre-
spond to the amplitude, width and location of the Gaussian
functions and ω is the angular velocity that represents the
RR interval variability.

3. Proposed Method

The proposed method is performed in two steps: first,
we employ a robust tensor decomposition-based method
to roughly extract fetal ECG from mixtures of fetal and
maternal ECGs; then a method based on extended Kalman
filter is used for fetal R-peak detection.

3.1. Fetal ECG Extraction

The deterministic blind separation of sources having
different symbol rates, proposed in [5] has been adapted
to ECG signal in this study for fECG extraction. This
method, assumes that each of the n = 1, . . . , N sources
has periodic symbols. Then, it builds a three-way tensor
Ȳ (n) ∈ CM×Tn×Ln , where M , Tn, and Ln denote the
number of sensors, symbol period and time samples per
symbol period of the n-th source, respectively. For each
source, the tensor is built by stacking the data for each pe-
riod of the source into a slice of the tensor. In the ECG
context, due to the quasi-periodic nature of the ECG sig-
nal, one can firstly detect ECG R-peaks then stack ECG
beats centered at the R-peaks to build the tensors Ȳ (n).
Each of these tensors can then be decomposed into the
loading matrices A(n) ∈ CM×Rn , S̄(n) ∈ CTn×Rn and
H̄(n) ∈ CLn×Rn , which provide estimates of the mixing
matrix, the ECG beat amplitude, and the ECG temporal
pattern. In [5], the Canonical Polyadic (CP) has been used
for tensor decomposition. However, in order to track the
fECG mixed with the strong mECG, a robust tensor de-
composition should be used. We employ a weighted CP
(WCP) for decomposition of the tensors, which applies a
weight on each entry of the tensor to better concentrate on
the signal of interest. Therefore, the new criterion is:
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are the elements of a nonnegative weight tensor, which is
of the same size as Ȳ (n). Here, µ is the mean of Ȳ (n) over
the j-th dimension and σ is the median absolute deviation
(MAD) estimator of Ȳ (n) over the j-th dimension.

In order to apply this method to roughly estimate fECG,
first maternal R-peaks are easily detected from the mix-
ture and the maternal tensor is built. Decomposition of
this tensor yields the maternal leading matrices that are
then used to reconstruct mECG. The reconstructed mECG
is subtracted from the mixture to provide a noisy estimate
of fECG, which can be used to roughly estimate fetal R-
peak positions. Having the rough fetal R-peak positions,
the fetal tensor can be constructed and decomposed. The
fetal loading matrices are finally used to reconstruct the
rough fECG estimate.

3.2. R-peak Detection

After extracting the fECG, we use an EKF-based
method for R-peak detection [6]. Discrete state and ob-
servation equations of our proposed model are defined in
(4) and (5), respectively.
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αi,k+1 = αi,k + uj,k, j = {1, · · · , 7}
bi,k+1 = bi,k + uj,k, j = {8, · · · , 14}
θi,k+1 = θi,k + uj,k, j = {15, · · · , 21}
i ∈ {P1, P2, Q,R, S, T1, T2}

(4)

Φk = φk + v1k
PPk = Pk + v2k
CCk = Ck + v3k
TTk = Tk + v4k

(5)

In (4), we have 25 states and we call it “EKF25” ap-
proach. The first state is the phase of the ECG. The sec-
ond, third and forth ones are the different waves of ECG
which are separately considered as a state. The parameters
of the Gaussian functions are considered as hidden-state
variables (states 5 to 21) with first order AR dynamics but
without corresponding observations.

In (5), we consider four observations for our model. The
first one corresponds to the phase observation and the oth-
ers correspond to the ECG observation in P, C and T inter-
vals, respectively. In fact, we determine three windows for
segmenting the original ECG and finding the PPk, CCk

and TTk observations. Here we use windows which are the
difference of two sigmoid functions and have almost soft
rising and falling edges. Figure 1 shows these windows
for P, C and T intervals. The begining and end of these
windows are defined corresponding to the phase of ECG.
Indeed, we assume that P , C and T intervals correspond to
ECG phase in the intervals [−π,−π/6], [−π/6, π/6] and



[π/6, π] respectively. It is important to note that this as-
sumption for normal ECG signals is almost valid. These
windows are defined in (6) and the shape of the windows
is controlled with γ, set here as γ = 30. Observations
PPk, CCk and TTk in (5) are calculated by multiplying
the original (observed) ECG signal and windows defined
in (6).
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Figure 1. ECG Phase and Windows for ECG Intervals.
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(6)
Figure 2 shows the block diagram of proposed approach

for finding R-peaks of fetal ECG signals. At first, all states
of the model are estimated by EKF25. After estimating the
Gaussian parameters (states 5 to 21), we construct the P1,
P2, Q, R, S, T1 and T2 Gaussian functions ((7)).

i(θ) = α̂i exp(−
(θ − θ̂i)

2

2b̂2i
), i ∈ {P1, P2, Q,R, S, T1, T2}

(7)
The proposed method consists of three steps:
• Using “peak detection” method (finding the maxima) for
estimated QRS Complex (Ĉ) and finding its peak which is
called PC .
• Constructing Q+R+ S Gaussian function and find the
maximum of this function which is called ΘR. ((8)).
• Using a decision rule like (9) to find the final R-peak
points of ECG (Rpeak), where sk is the extracted fetal
ECG signal.

ΘR = argmax(Q(θ) +R(θ) + S(θ)) (8)

Rpeak = argmax(sk(ΘR), sk(PC)) (9)
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Figure 2. Block diagram for detecting R-peaks.

4. Results

For validation of our method, we use the noninvasive
fetal ECG database in the Physionet/Computing in Cardi-
ology Challenge 2013 [7]. This dataset consist of a collec-
tion of one-minute fetal ECG recordings. Each recording
includes four noninvasive abdominal signals and was sam-
pled at 1 kHz. Details can be found in [7].

Figures 3 and 4 show the first channel of recorded ECG
(which is a mixture of maternal ECG, fetal ECG and other
noises), estimated maternal and fetal ECGs by the pro-
posed method for data “a08” and “a12” from the database,
respectively. In these figures, the reference annotations
(the given R-peaks) and the estimated R-peaks by the pro-
posed method are shown with green and red points, respec-
tively. We can see that the proposed method can extract
fetal ECG from recorded ECG and also can detect the R-
peaks with a high accuracy. Figure 5 shows the estimated
fetal ECG, the given R-peaks (green points) and the esti-
mated R-peaks (red points) for data “a03”, “a04”, “a05”
and “a22” of database.
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Figure 3. (a). First channel of recorded ECG (data “a08”)
and given R-peaks (b). Estimated maternal ECG (c). Es-
timated fetal ECG, given R-peaks (green points) and esti-
mated R-peaks (red points).
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Figure 4. (a). First channel of recorded ECG (data “a12”)
and given R-peaks (b). Estimated maternal ECG (c). Es-
timated fetal ECG, given R-peaks (green points) and esti-
mated R-peaks (red points).
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Figure 5. Estimated fetal ECG, Given R-peaks (green
points) and estimated R-peaks (red points) for data “a03”,
“a04”, “a05” and “a22”.

5. Discussion and Conclusions

In this paper, we proposed a method for accurate fetal R-
peak detection from noninvasive maternal and fetal ECG
mixtures which are acquired from multiple electrodes on
mother’s abdomen. For rough fetal ECG extraction, we
employed a robust tensor decomposition method and for
fetal R-peak detection, we used a method based on EKF.
The WCP decomposition used in this study enables us to
capture weak traces of the fECG mixed with the strong
mECG. In addition, by introducing a simple AR model for
each of the 21 dynamic parameters of the Gaussian func-
tions and considering separate states for ECG waves, new
EKF structure was constructed.

Quantitative and qualitative results show that proposed

approach detects R-peaks of fetal ECG with a high ac-
curacy. The average score of our proposed method for
the PhysioNet Challenge 2013 on set B from entry 1 are
1326.21 and 45.06 for event 4 and 5 respectively.

Acknowledgements

This work is partially supported by a scholarship of
French Embassy and the European project ERC-2012-
AdG-320684-CHESS.

References

[1] Sameni R, Jutten C, Shamsollahi MB. Multichannel electro-
cardiogram decomposition using periodic component analy-
sis. IEEE Trans Biomed Eng Aug. 2008;55(8):1935–1940.

[2] Niknazar M, Rivet B, Jutten C. Fetal ECG extraction by ex-
tended state kalman filtering based on single-channel record-
ings. IEEE Trans Biomed Eng Dec. 2012;60(5):1345–1352.

[3] McSharry PE, Clifford GD, Tarassenko L, Smith LA. A dy-
namic model for generating synthetic electrocardiogram sig-
nals. IEEE Trans Biomed Eng Mar. 2003;50(3):289–294.

[4] Sameni R, Shamsollahi MB, Jutten C, Clifford GD. Nonlin-
ear bayesian filtering framework for ECG denoising. IEEE
Trans Biomed Eng Dec. 2007;54(12):2172–2185.

[5] Almeida A, Comon P, Luciani X. Deterministic blind sep-
aration of sources having different symbol rates using ten-
sor based parallel deflation. In 9th international conference
on Latent variable analysis and signal separation (LVA/ICA
2010), Berlin. 2010; 362–369.

[6] Akhbari M, Shamsollahi MB, Jutten C. ECG fiducial points
extraction by extended kalman filtering. In 36th International
Conference on Telecommunications and Signal Processing
(TSP2013), Rome, Italy. July 2013; 628–632.

[7] http://www.physionet.org/challenge/2013/.

Address for correspondence:

Mahsa AKHBARI
BiSIPL, School of Electrical Engineering, Sharif University of
Technology, Azadi Avenue, Tehran, Iran, P.O. Box. 111554363
mahsa.akhbari@gipsa-lab.grenoble-inp.fr


