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Abstract

Brain Computer Interface systems rely on lengthy
training phases that can last up to months due to the
inherent variability in brainwave activity between users.
We propose a BCI architecture based on the co-learning
between the user and the system through different
feedback strategies. Thus, we achieve an operational
BCI within minutes. We apply our system to the piloting
of an AR.Drone 2.0 quadricopter. We show that our
architecture provides better task performance than
traditional BCI paradigms within a shorter time frame.
We further demonstrate the enthusiasm of users
towards our BCI-based interaction modality and how
they find it much more enjoyable than traditional
interaction modalities.
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Introduction

Current BCI systems are mostly grounded on a
supervised machine-learning (ML) approach. This
paradigm relies on lengthy training phases that can last
a very long time until good performance is achieved.
This limits the usage as an interaction modality for
Human-Computer Interaction (HCI) [4], especially in
terms of the operationalization. Furthermore, a
supervised paradigm typically requires that the training
phases as well as the interactive use of the system be
done in a synchronous manner: the system tells the
user when to perform an action. Alternatives to
classical supervised systems are asynchronous BCI
systems: the user is free to act at any time, but main
challenge with such systems is that they are very
difficult to develop and to evaluate [1].

We propose an architecture that minimizes the need for
a synchronous training phase: it requires a few seconds
of calibration data. The foundation of the architecture is
our use of feedback: contrarily to simply using
feedback from the system to the user (usual setting),
we introduce feedback from the user to the system. In
other words, we propose a co-learning based BCI
system following the principles of [2]. We apply the
system to the task of piloting an AR Drone in a task
that involves taking off, flying in a straight line until a
target is reached and landing the drone.

Audience & Relevance for CHI

The BCI based interaction modality we propose is
aimed at making BCI interaction more ubiquitous and
more practical to use in out-of-the-lab interactive tasks
for everyone. Our modality retains the advantage of
BCIs systems but makes them accessible to regular
users easily by overcoming the main limitations of BCIs
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(see Challenges section for more details). Moreover,
our goal is to make BCI systems fully usable as a new
modality for HCI systems.

Challenges
We have identified several challenges regarding current
BCI systems:

- (C1) Long training phases;

- (C2) High variability and noise/signal ratio;

- (C3) Training phases often disconnected from
the actual tasks and are monotonous;

- (C4) A lot of emphasis on training the system
but not on training the user. Training users
could help them perform the tasks better;

- (C5) Minimal feedback strategies that tend to
annoy users

Our system goes towards overcoming these challenges:

e Semi-supervised asynchronous BCI (minimizing
training time - C1);

e ICA-based DSP techniques (reduce
variability/SNR, extract better features - C2);

e Bidirectional feedback at the very center of the
system. Incremental training model (training
part of performing the task (C3), user training
has equal importance (C4));

e More advanced and alternative forms of
feedback (e.g. exploiting Electromyography
(EMG)) (C5).

Design & Description

Figure 1 shows an overview of our system. The
acquisition (1) is performed with 14 electrodes over the
motor cortex. Then follows the classification stage (2)
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Figure 2. Exhibit of our system in
use

where signals a processed and filtered (Band Power,
Independent Component Analysis). By using distance
measures between current signals and calibration
signals for each class and each channel, we can select
the most likely by taking the class with a majority of
shortest distances. The feedback from the system to
the user (4) is the current classification result. The
innovation in our architecture is the addition of
affirmative feedback (was the classification correct?)
from the user to the system (5) that allows adapting
the classification step. The output of the classification
step is what determines the action to trigger in specific
applications.

The current type of BCI the architecture supported in
our implementation is Motor Imagery (MI) [4]. Motor
imagery is the detection of imagined movements
(hands, arms, legs, etc.) and is appreciated by users as
shown in in Kosmyna & Tarpin-Bernard [3]. However
the system is extensible to other BCI paradigms.

Performance

We performed a series of experiments with 25 users, to
evaluate the performance of the architecture. We
compared our system to a supervised system.
Performance is better with an acclimation time shorter
than supervised training. Users expressed enthusiasm
for our system. We also evaluated the system with
regard to the native tablet application. Although the
performance of our system does not yet rival the
touch-based piloting application, users found our BCI
interaction more enjoyable.

Figure 2 illustrates our system in use.
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Task & Installation

Setting. The task is intended to take place in a large
room or space of roughly 6 meters long over 5 meters
wide. All the processing for our system is performed on
a Mac Book Pro that needs to be connected to a
projector to display the feedback application. The
experimental setting is illustrated in Figure 3.

There are two targets on the ground 4,67 m away
(maximal length we managed to obtain in our initial
setting). The first target is the starting location of the
drone and is represented by a helipad sign on a black
background. The second target is the landing target, on
which the user has to land the drone. The size of the
second target is 24 cm in width and 60 cm in length.
The width of the target roughly corresponds to the
width of the drone plus a small margin. The length
corresponds to roughly three times the width of the
drone.

Equipment. The equipment, experimenter and subject
are located on the side of the room. A projection screen
is placed in such a way as to allow the subject (seated

at
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Figure 3. The experimental setting
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Figure 4 The feedback GUI

Figure 5. Position of the
feedback electrodes

an angle) to see the drone and the screen with minimal
movement. For the BCI interface, we use a g.tec
USBAmp, 16 channel amplifier with a 16 electrode
g.SAHARA dry active electrode system, mounted on a
g.GAMMAcap.

Protocol. The subject first performs the calibration
phase, where each of the imagined actions has to be
performed for 20 seconds. Then follows an acclimation
phase (2 min) where the subject can get used to the
feedback on the screen and to giving feedback with
facial gestures. Feedback is given until the subject feels
confident in the degree of control.

Commands. We use three commands for the piloting
task: taking off, going forward and landing. As we are
in an asynchronous context, the state where no
movement is imagined, or resting state, is most natural
for the forward action (continuous over longer
durations) when the drone is in the air and to no action
when the drone is in a landed state (class 1). Then we
respectively map left and right hand imagined
movements (most common, adapted for spontaneous
actions) to taking off and landing the drone.

User Feedback. We need users to give feedback to the
system in order to train it, in a way that does not
interfere with the motor imagery BCI. We cannot use
touch-based feedback as the brain activity overlaps our
left and right motor imagination classes. Our solution is
to exploit EMG signals from face muscles as users
perform light facial expressions. We use two disposable
medical electrodes, one between the eyes and one on
the left side of the lips. We instructed users to smile
when the classification is correct and to frown
otherwise: the first electrode (1) detects frowns and
the second (2) detects smiling, as shown in Figure 4.
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System Feedback. The feedback from the system to
the user is displayed on a screen. The feedback consists
in the currently detected state and the classification
percentage of that state (text + progress bar), as well
as the 4 previous classification results (Figure 5).

Conclusion

We proposed and asynchronous BCI system for control-
related interactive tasks that reduces the need for
uncomfortably long training phases and that makes the
training process more engaging through co-learning.
The system shows great enthusiasm in users and
promising performance compared to standard BCI
systems.
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