
 

Bidirectional Feedback in Motor 
Imagery BCIs: Learn to Control  
a Drone within 5 Minutes

 
Abstract 
Brain Computer Interface systems rely on lengthy 
training phases that can last up to months due to the 
inherent variability in brainwave activity between users. 
We propose a BCI architecture based on the co-learning 
between the user and the system through different 
feedback strategies. Thus, we achieve an operational 
BCI within minutes. We apply our system to the piloting 
of an AR.Drone 2.0 quadricopter. We show that our 
architecture provides better task performance than 
traditional BCI paradigms within a shorter time frame. 
We further demonstrate the enthusiasm of users 
towards our BCI-based interaction modality and how 
they find it much more enjoyable than traditional 
interaction modalities. 
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Introduction 
Current BCI systems are mostly grounded on a 
supervised machine-learning (ML) approach. This 
paradigm relies on lengthy training phases that can last 
a very long time until good performance is achieved. 
This limits the usage as an interaction modality for 
Human-Computer Interaction (HCI) [4], especially in 
terms of the operationalization. Furthermore, a 
supervised paradigm typically requires that the training 
phases as well as the interactive use of the system be 
done in a synchronous manner: the system tells the 
user when to perform an action. Alternatives to 
classical supervised systems are asynchronous BCI 
systems: the user is free to act at any time, but main 
challenge with such systems is that they are very 
difficult to develop and to evaluate [1].  

We propose an architecture that minimizes the need for 
a synchronous training phase: it requires a few seconds 
of calibration data. The foundation of the architecture is 
our use of feedback: contrarily to simply using 
feedback from the system to the user (usual setting), 
we introduce feedback from the user to the system. In 
other words, we propose a co-learning based BCI 
system following the principles of [2]. We apply the 
system to the task of piloting an AR Drone in a task 
that involves taking off, flying in a straight line until a 
target is reached and landing the drone.  

Audience & Relevance for CHI 
The BCI based interaction modality we propose is 
aimed at making BCI interaction more ubiquitous and 
more practical to use in out-of-the-lab interactive tasks 
for everyone. Our modality retains the advantage of 
BCIs systems but makes them accessible to regular 
users easily by overcoming the main limitations of BCIs 

(see Challenges section for more details). Moreover, 
our goal is to make BCI systems fully usable as a new 
modality for HCI systems.  

Challenges 
We have identified several challenges regarding current 
BCI systems: 

- (C1) Long training phases;  - (C2) High variability and noise/signal ratio;  - (C3) Training phases often disconnected from 
the actual tasks and are monotonous;  - (C4) A lot of emphasis on training the system 
but not on training the user. Training users 
could help them perform the tasks better;  - (C5) Minimal feedback strategies that tend to 
annoy users 

Our system goes towards overcoming these challenges: 

 Semi-supervised asynchronous BCI (minimizing 
training time – C1); 

 ICA-based DSP techniques (reduce 
variability/SNR, extract better features – C2);  

 Bidirectional feedback at the very center of the 
system. Incremental training model (training 
part of performing the task (C3), user training 
has equal importance (C4)); 

 More advanced and alternative forms of 
feedback (e.g. exploiting Electromyography 
(EMG)) (C5). 

Design & Description 
Figure 1 shows an overview of our system. The 
acquisition (1) is performed with 14 electrodes over the 
motor cortex. Then follows the classification stage (2) 

 

Figure 1. Overview of the 
architecture 
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