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Abstract

Audio-visual speech source separation consists in mixing vi-
sual speech processing techniques (e.g. lip parameters tracking)
with source separation methods to improve and/or simplify the
extraction of a speech signal from a mixture of acoustic signals.
In this paper1, we present a new approach to this problem: vi-
sual information is used here as a voice activity detector (VAD).
Results show that, in the difficult case of realistic convolutive
mixtures, the classic problem of the permutation of the output
frequency channels can be solved using the visual information
with a simpler processing than when using only audio informa-
tion.
Index Terms: blind source separation, convolutive mixtures,
visual voice activity detection, audiovisual speech

1. Introduction
Blind source separation (BSS) consists in retrieving source sig-
nals from mixtures of them, without any knowledge on the mix-
ing nature, or on the sources themselves. As far as speech sig-
nals are concerned, the separation is no more completely blind
since speech signals have specific properties that can be ex-
ploited in the separation process. For instance, non-stationarity
of speech has been exploited in [1, 2]. However, accurate sep-
aration is still a difficult task, notably in the case where less
sensors than sources are available, and also because of the per-
mutation and scale factor indeterminacies: output signalscan
only be reconstructed up to a gain and a permutation on the out-
put channels [3].

Audiovisual (AV) speech source separation is an attractive
field to solve the source separation problem when speech sig-
nals are involved (e.g. [4, 5, 6]). It consists in exploitingthe
(audio-visual) bi-modality of speech, especially the speaker’s
lip movements, to improve and/or simplify the performance of
acoustic speech source separation. For instance, Sodoyeret
al. [4], and then Wanget al. [5] and Rivetet al. [6] have pro-
posed to use a statistical model of the coherence of audio and
visual speech features to extract a speech source in the caseof
instantaneous and convolutive mixtures respectively.

In this paper, we propose a new different and simpler but
even so efficient approach for the permutation problem. We
propose to use the visual speech information of a speaker as a
voice activity detector (VAD): the task is to assess the presence

1This paper is based on work already submitted to IEEE DSP 2007.

or the absence of the speaker in the mixture. Such information
allows the extraction of the particular (filmed) speaker from the
mixture thanks to a very simple proposed method.

This paper is organized as follows. Section 2 presents the
basis of the proposed visual VAD (V-VAD). Section 3 recalls
the principle of source separation in the frequency domain for
convolutive mixtures and explains how the V-VAD correspond-
ing to a particular speaker can be useful to solve the permutation
ambiguity for this speaker. Section 4 presents numerical exper-
iments.

2. Visual voice activity detection
The visual voice activity detector (V-VAD) that we combine in
this study with source separation, has been described in details
in [7]. We thus give here a succinct description. The main idea
of this V-VAD is that during speech, lips are generally moving
whereas they are not moving (so much) during silences. So we
use the video parameter
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whereA(m) (resp.B(m)) is the speaker’s lip contour internal
width (resp. height). Such parameters are automatically ex-
tracted every 20ms (a speechframelength) synchronously with
the audio signal (sampled at 16kHz) by using the “face process-
ing system” of the GIPSA/ICP laboratory [8]. To improve the
silence detection, we smoothv(m) overT consecutive frames

V (m) =

T−1
∑

l=0

al v(m − l), (2)

wherea = 0.82. The m-th input frame is then classified as
silence ifV (m) is lower than a thresholdδ and it is classified as
speech otherwise. As explained in Section 3, the aim of the V-
VAD is to actually detectsilences, i.e. frames where the speaker
do not produce sounds. Therefore, to decrease the false alarm
(silence decision while speech activity) rate, only sequences of
at leastL = 20 frames (i.e. 400ms) of silence are actually
considered as silences [7]. This leads to 80% of good detection
for only 15% of false alarms. Finally, the proposed V-VAD
is robust to any acoustic noise, even in highly non-stationary
environment, whatever the nature and the number of competing
sources.



3. BSS with visual VAD
In this section, we first briefly present the general framework
of BSS for convolutive mixtures and then we explain how the
V-VAD can solve the permutation problem.

3.1. BSS of convolutive mixtures

Let us considerN sourcess(m) = [s1(m), · · · , sN(m)]T

(T denoting the transpose) to be separated fromP observa-
tions x(m) = [x1(m), · · · , xP (m)]T defined byxp(m) =
∑N

n=1
hp,n(m) ∗ sn(m). The filtershp,n(m) that model the

impulse response betweensn(m) and thep-th sensor are en-
tries of the mixing filter matrixH(m). The goal of the BSS
is to recover the sources by using a dual filtering process:
ŝn(m) =

∑P

p=1
gn,p(m)∗xp(m) wheregn,p(m) are entries of

the demixing filter matrixG(m) which are estimated such that
the components of the output vectors (the estimated sources)
ŝ(m) = [ŝ1(m), · · · , ŝN (m)]T are as mutually independent as
possible. This problem is generally considered in the frequency
domain (e.g. [1, 2]) where we have

Xp(m, f) =
N

∑

n=1

Hp,n(f)Sn(m, f) (3)

Ŝn(m, f) =

P
∑

p=1

Gn,p(f)Xp(m,f) (4)

whereSn(m, f), Xp(m, f) andŜn(m,f) are the Short-Term
Fourier Transforms (STFT) ofsn(m), xp(m) and ŝn(m) re-
spectively.Hp,n(f) andGn,p(f) are the frequency responses
of the mixing and demixing filters respectively. From (3) and
(4), basic algebra manipulation leads to

Γx(m, f) = H(f)Γs(m, f)HH(f) (5)

Γŝ(m, f) = G(f)Γx(m, f)GH(f) (6)

whereΓy(m, f) denotes the time-varying power spectrum den-
sity (PSD) matrices of a signal vectory(m). H(f) andG(f)
are the frequency response matrices of the mixing and demixing
filter matrices (H denotes the conjugate transpose).

If the sources are assumed to be mutually independent (or
at least decorrelated),Γs(m,f) is diagonal and an efficient sep-
aration must lead to a diagonal matrixΓŝ(m, f). A basic crite-
rion for BSS [2] is to calculateΓx(m,f) from the observations
and adjust the matrixG(f) so thatΓŝ(m, f) is as diagonal as
possible. Since this condition must be verified for any time in-
dexm, this can be done by a joint diagonalization method (i.e.
best approximate simultaneous diagonalization of severalma-
trices), and in the following we use the algorithm of [9].

3.2. Canceling the permutation indeterminacy
The well-known crucial limitation of the BSS problem is that
for each frequency bin,G(f) can only be provided up to a scale
factor and a permutation between the sources:

G(f) = P (f) D(f) Ĥ−1(f), (7)

whereP (f) andD(f) are arbitrary permutation and diagonal
matrices. Several audio approaches to the permutation indeter-
minacy were proposed (e.g. [1, 2, 10]). In [6], we proposed to
use a statistical model of the coherence of visual and acoustic
speech features to cancel the permutation and scale factor inde-
terminacies of audio separation. Although effective, the method

had the drawbacks to require an off-line training and to be com-
putationally expensive.

In this new study, we simplify this approach by directly ex-
ploiting the V-VAD focusing on the lips of a specific speaker.
The audiovisual model of [6] is replaced by the (purely visual)
V-VAD of Section 2 and the detection of theabsenceof a source
allows to solve the permutation problem for that peculiar source
when this source ispresentin the mixtures. Indeed, at each fre-
quency binf , the separation process (Subsection 3.1) provides
a separating matrixG(f) which leads to a diagonal PSD matrix
Γŝ(m, f) of the estimated sources. Thek-th diagonal element
of Γŝ(m, f) is the spectral energy of thek-th estimated source
at frequency binf and timem. The logarithm ofΓŝ(m, f) is
called here aprofile and is denotedE(f, m; k):

E(f, m; k) = log (Γŝ(m,f))
k,k

, (8)

where(Γŝ(m, f))
k,k

is thek-th diagonal element ofΓŝ(m, f).
Let denoteT the set of all time indexes. The V-VAD associated
with a particular source, says1(m), provides the set of time in-
dexesT1 when this source vanishes (T1 ⊂ T ). Then the profile
E(f, m; ·), with m ∈ T1, corresponding to the estimation of
s1(m) must be close to−∞. Therefore, at the output of the
joint diagonalization algorithm, we compute centered profiles
ET1

(f ; k) calculated durings1(m) absence detectionm ∈ T1:

ET1
(f ; k) =

1

|T1|

∑

m∈T1

E(f, m;k) −
1

|T |

∑

m∈T

E(f, m; k)

(9)
where|T1| is the cardinal number of the setT1. Note that since
each source can only be estimated up to a gain factor, the pro-
files are defined up to an additive constant. Hence by center-
ing all profiles (by subtracting their time average) this addi-
tive constant is eliminated. Then, based on the fact that the
centered profileET1

(f ; ·) corresponding tos1(m) must tend
toward −∞, for all frequenciesf , we search for the small-
est centered profile. Finally, we setP (f) so that this smallest
centered profile corresponds toET1

(f ; 1). Applying this set
of permutation matricesP (f) to the demixing matricesG(f)
for all time indexesT (i.e. including the ones wheres1(m) is
present) allows to reconstructs1(m) without frequency permu-
tations when it is present in the mixtures.

Note that, the proposed scheme enables to solve frequency
permutations for a given source if it has an associated V-VAD
for absence detection, but frequency permutations can remain
on the other sources without consequences for the extraction
of s1(m). To extract more than one source, it is necessary to
have additional corresponding detectors and to apply the same
method.

4. Numerical experiments
In this section, we consider two sources mixed by2 × 2 ma-
trices of FIR filters of 512 lags with three significant echoes,
which are truncated impulse responses measured in a real
3.5m×7m×3m conference room2. The source to be extracted,
say s1(m), consists of spontaneous male speech recorded in
dialog condition. The second source consists of continuous
speech produced by another male speaker. In each experi-
ments, ten seconds of signals, randomly chosen from the two
databases, were mixed and then used to estimate separating fil-
ters of 4096 lags (thus it is the size of all STFTs).

2They can be found at http://sound.medi.mit.edu/ica-bench.
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Figure 1: Permutation estimation. From top to bottom: centered
profilesET1

(f ; 1) andET1
(f ; 2) before permutation cancella-

tion; performance indexr1(f) (truncated at 1) before and after
permutation cancellation respectively.

Since we are only interested in extractings1(m) we define
a performance index as

r1(f) = |GH12(f)/GH11(f)| , (10)

whereGHi,j(f) is the(i, j)-th element of the global system

GH(f) = G(f) H(f). (11)

For a good separation, this index should be close to 0, or close to
infinity if a permutation has occurred: the performance index is
thus also an efficient flag to detect if a permutation has occurred.

First, we present performance of the proposed permutation
cancellation method (Fig. 2 and Fig. 1). In a real life applica-
tion context the mixing filters are unknown, so it is impossible
to compute the performance indexr1(f). However, one can see
(Fig. 1) that the proposed centered profiles (9) are very corre-
lated with the performance indexr1(f), leading to a simple and
efficient estimation ofr1(f). Finally, let denote(P1/P2)T1

the
ratio of the averaged powersP1 andP2 of the two sourcess1

ands2 respectively during time indexesT1 (the silence ofs1).
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Figure 2: Percentage of remaining permutation versus ratio
(P1/P2)T1

(On the right: repartition of the 400 results)
.

The proposed permutation cancellation method performs quite
well as shown in Fig. 2 which plot the percentage of remain-
ing permutations versus the ratio(P1/P2)T1

. Indeed, 75% of
the 400 tested situations leads to less than 2.4% of remaining
permutations (2.4% is the median value) and the good detection
rate increased to 89% for only 5% of remaining permutations.
However, one can see that the residual permutations correspond
to isolated permutations (Fig. 1 bottom) which are shown to
have minor influence on the separation quality: they are gener-
ally assumed to correspond to spectral bins with both sources of
low energy.

Our system was compared to the baseline frequency domain
ICA without permutation cancellation as well as to an audio-
based permutation cancellation system [2]. In this example, the
two sources (resp. the two mixtures) are plotted in Fig. 3(a)
(resp. in Fig. 3(b)). In this example, the dotted line repre-
sents a manual indexation of silence and the dashed line rep-
resents the automatic detection obtained by the V-VAD, which
is quite good (see more detailed results in [7]). In the first ex-
periment (Fig. 3(c)), the sources1 is estimated by the baseline
frequency domain ICA without permutation cancellation. One
can see on the global filter (Fig. 3(c)-right) the consequences
of unsolved permutations:(G ∗ H)1,1(n) is not significantly
larger than(G ∗ H)1,2(n), so the estimation ofs1 is quite poor
(Fig. 3(c)-left). In the second experiment (Fig. 3(d)), thesource
s1 is estimated by the baseline frequency domain ICA with an
audio-based permutation cancellation system [2] followedby a
manual selection of̂s1 among the two estimated sources. In
the last experiment (Fig. 3(e)), the sources1 is estimated by the
baseline frequency domain ICA with the proposed audiovisual
permutation cancellation system. In these two experiments, one
can see that the sources are well estimated ((G ∗ H)1,1(n) is
much larger than(G ∗H)1,2(n)) and very close source estima-
tions are obtained.

5. Conclusion
The proposed combined audiovisual method provides a very
simple scheme to solve the permutations of a baseline frequency
domain ICA. Indeed, given the time indexes of absence of a pe-
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(c) Estimation ofs1 by the baseline frequency domain ICA without permutation cancellation
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(d) Estimation ofs1 by the baseline frequency domain ICA with an audio-based permutation cancellation system [2]
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(e) Estimation ofs1 by the baseline frequency domain ICA with the proposed audiovisual permutation cancellation system

Figure 3: Illustration of the extraction ofs1 from mixtures using different systems.

culiar source provided by the visual voice activity detection, it
is simple to solve the permutation corresponding of this source
thanks to the proposed centered profiles.

Beyond the presented example, the proposed combined au-
diovisual method was tested on several experimental mixture
conditions (e.g. nature of competing sources, length of themix-
ing filters, etc.) and yields very good source extraction. This
method has three major advantages compared to a purely au-
dio approach (e.g. [2]): (i) it is computationally much simpler
(given that the video information is available), especially when

more than two sources are involved; (ii) the visual proposed
method implicitly extracts the estimated sour-ce corresponding
to a filmed speaker, while purely audio regularization provides
the estimated sources in an arbitrary order (i.e. up to aglobal
unknown permutation of the regularized sources across speak-
ers); (iii) more generally the visual approach to voice activity
detection [7] is robust to any acoustic environment (unlikea
purely audio voice activity detection).

In this work, all processes were made off-line, that is to
say on a large section of signals (about 10 seconds). Future



works concern a pseudo real-time version where the processes
are updated on-line. Also, the use of visual parameters extracted
from natural face processing in natural environment is currently
being explored. All this will contribute to build a system usable
in real life conditions.
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