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Abstract. Blind source separation, which supposes that the sources are
independent, is a well known domain in signal processing. However, in
a noisy environment the estimation of the criterion is harder due to the
noise. In strong noisy mixtures, we propose two new principles based
on the combination of wavelet de-noising processing and blind source
separation. We compare them in the cases of white/correlated Gaussian
noise.

1 Introduction

Blind source separation (BSS) is a well known domain in signal processing.
Introduced by J. Hérault, C. Jutten and B. Ans [1], its goal is to recover unknown
source signals of which only mixtures are observed with only assumptions that
the source signals are mutually statistically independent. A lot of BSS models
such as instantaneous linear mixtures, convolutive mixtures are presented in
recent publications [2–4]. The success of the BSS is its wide range of applications
whether it is in telecommunication, speech or medical signal processing. However,
the best performances of these methods are obtained for the ideal BSS model
and their effectiveness is definitely decreased with observations corrupted by
additive noise.

The aim of this paper is to present how to associate wavelet de-noising pro-
cessing and BSS in order to improve the estimated sources. This paper is or-
ganized as follows. Section 2 introduces the BSS problem in noisy mixtures.
Section 3 explains the wavelet de-noising principles and proposes two new prin-
ciples for associating wavelet de-noising and BSS. Section 4 proposes numerical
experiments before conclusion and perspectives in section 5.

2 Modelization of the problem

In an instantaneous linear problem of source separation, the unknown source
signals and the observed data are related by (Fig. 1):

y(k) = A s(k) + n(k) = x(k) + n(k) (1)



where A is an unknown full rank p × q mixing matrix (p ≥ q), s(k) is a column
vector of q source signals assumed mutually statistically independent, y(k) a
column vector of p mixtures and n(k) an additive noise. By estimating a q × p

full rank matrix B one provides estimated sources which are the components (as
independent as possible) of the output signal vector ŝ(k) defined as (Fig. 1):

ŝ(k) = B y(k) = BA s(k) + B n(k) (2)

+
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Fig. 1. Blind source separation model in noisy mixtures.

This equation shows that the estimated sources ŝ are affected by the additive
noise. Let us illustrate this phenomenon with the figure 2. c) which shows that
the estimated separating matrix B̂ is not well estimated (B̂ 6= B) since the ideal
sources (see definition 1 below) are different from the original sources. Moreover,
even if the separating matrix is well estimated (B̂ = B), the noise affects the
estimated sources as shown in d).
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Fig. 2. Illustration of the harmful presence of the noise. a) the original sources s, b) the
noisy mixtures y, c) the “ideal” sources (see definition 1) and d) the noisy estimated
sources ŝ.

Definition 1. The ideal source signal sideal(k) is defined as the product of the
separating matrix B which is estimated from the noisy mixtures, by the noisy-free
mixtures x(k):

sideal(k) = Bnoisy x(k) (3)

3 Wavelet de-noising for BSS

As we said, in BSS the estimated separating matrix is affected by the additive
noise. Thus, a powerful de-noising processing before separation seems to be a
good solution. In this section we first recall the bases of wavelet de-noising (3.1).
Then we propose three methods of wavelet de-noising for BSS: the method pro-
posed by Paraschiv-Ionescu et al. [5] (3.2) and two new methods (3.3 and 3.4).



3.1 Fundamental of wavelet de-noising

The discret wavelet transform (DWT) is a batch processing, which analyses
a finite length time domain signal by breaking up the initial domain in two
parts: the detail and approximation information [6]. The approximation domain
is successively decomposed into detail and approximation domains.

We use two properties of the discret wavelet transform (DWT):

– the DWT is scattered3: a few number of large coefficients dominates the
representation,

– the wavelet coefficients are less correlated than the temporal ones.

As a result, we use a nonlinear thresholding function and we treat the coeffi-
cients independently to each other. Practicaly, the wavelet de-noising processing
consists in applying the DWT to the original noisy signal, chosing the value of
the threshold, thresholding the detail coefficients, then inversing the DWT.

Denote W(·) and W−1(·) the forward and reverse DWT operators, d(·) the
operator which selects the value of the threshold and T (·, λ) the thresholding
operator with the threshold λ. Considering the i−th noisy observed signal yi

from (1), the wavelet de-noising processsing is defined as














wi = W(yi) = θi + bi

λ = d(wi)

θ̂i = T (wi, λ)

x̂i = W−1(θ̂i)

(4)

where xi = (A s)i is the i−th noisy free mixture. θi = W(xi) and bi = W(ni)
are respectively the DWT coefficients of the noisy free mixture and the noise.
Let denote by x̂i = D(wi) the de-noising processing summarizing the four pre-
vious stages. Note that the choice of the wavelet function used in the transform
is based on one’s needs. The choice of a DWT operator can have significant
effects on the scheme’s performance in terms of noise/signal ratio. Generally,
the best choice will resemble “theoretically” the desired feature in the profile,
the counterpart being that the analysis fails in direct comparison of the profiles’
wavelet transform and identify not-so-similar features. In our analysis, we apply
a wavelet transform with the data-adaptive threshold selection rule Sureshrink
of c©Matlab wavelet toolbox to identify sharp gradients.

3.2 P.S. method

The wavelet de-noising Pre-Separating processing (P.S.) [5] consists in intro-
ducing a wavelet de-noising processing before the separating algorithm (Fig. 3).
Thus, the separating matrix B is estimated from de-noised mixtures x̂(k). The
estimated sources and the noisy mixtures are related by

ŝ = BD(y) x̂ with x̂ = D(y) (5)

3 This property is based on the fact that the noise is broad band and is present over
all coefficients while deterministic signal is narrow band.
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Fig. 3. Principle of the P.S. method.

where the index D(y) recalls that the separating matrix BD(y) is estimated from
the de-noised mixtures.

3.3 Serial P.S.P. method

However, the P.S. method is definitely not efficient. Indeed, the frequency bands
or the scales occupied by the mixtures correspond to the union of those occupied
by the sources since the mixtures are linear combinations of the sources.

Consequently, we propose the following Serial wavelet Pre-Separating and
Post-separating de-noising processing (Serial P.S.P). This method (Fig. 4) allows
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Fig. 4. Principle of the Serial P.S.P. method.

us to adapt the pre-separating de-noising processing to the mixtures and the
post-separating de-noising processing to the sources. However, a classical de-
noising processing using the variance of the noise σ̂2 estimated from the wavelet
coefficients at scale 1 cannot succeed. Indeed, the de-noising pre-processing
changes the white nature of the noise. In order to overcome this difficulty, we
propose the following stages:

1. estimate the variance of the noise σ̂2
y = (σ2

y1
, · · · , σ2

yq
)T which corrupts the

observed data (cf [6] page 447),
2. calculate σ̂2

ŝ
= B∗2 σ̂2

y which is an estimation of the variance of the noise4

present in the estimated sources ŝ(k), since the noise is white and Gaussian,
3. use a de-noising processing on ŝ(k) using σ̂2

y for determining the value of the
threshold.

Using Serial P.S.P., we have to choose carefully the pre-denoising scale. If this
scale is overestimated, it provides a distortion of the mixtures x = As, which
becomes x̃ = Ãs̃, where both Ã 6= A and s̃ 6= s. Thus both estimation of Ã, and
restitution of s̃, even perfect, do not lead to the good solutions.

4 Let denote B
∗2 the operator which means (B∗2)i,j = (Bi,j)

2.



3.4 Parallel P.S.P. method

One of the major problems of the previous methods (P.S. or Serial P.S.P.) lies in
the pre-separating de-noising processing: it could remove signal and especially
the details (i.e. differences between the used wavelet and the signal). Even if this
can provide a good estimate of the separating matrix, this may be disastrous
for estimating the source signals since the details can contain low power sources
(ECG fetal sources for instance). To overcome this problem we propose the
following principle (Fig. 5): the Parallel Pre-Separating de-noising and Post-
separating de-noising processing (Parallel P.S.P.).
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Fig. 5. Principle of Parallel P.S.P. denoising

The algorithm consists in

1. de-noising the noisy observed data y(k) = x(k) + b(k) using an ad-hoc
principle to obtain estimated mixed signals x̂(k) = D(y),

2. using these estimated mixed signals x̂(k) in order to estimate the separating
matrix BD(y),

3. estimating noisy source signals defined as ŝ(k) = BD(y) y(k),
4. de-noising the noisy estimated source signal thanks to a post-separating de-

noising processing s∗(k) = D(̂s).

Thus, noisy estimated source signals and observed data are related by

ŝ(k) = BD(y) y(k) = BD(y) A s(k) + BD(y) b(k) (6)

This principle allows us to distinguish the estimation of the separating matrix
B and the restitution of the denoised sources s∗.

4 Simulated experiments

In the following, we will consider the case of two sources mixed by a 2 × 2
matrix. We suppose that the mixed signals are corrupted by an additive noise.
In order to compare the principles, we need two indexes: the performance index
which quantifies the separating accuracy and the decay index which quantifies
the remaining signal after de-noising processing.



Definition 2. The performance index (PI) [7] which quantifies the separation
accuracy is defined as

PI =

q
∑

i=1
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(7)

where ci,j is the (i, j)−th element of the global system C = BA.

Definition 3. The remaining signal sremaining after de-noising processing is
defined as the inverse wavelet transform of the coefficients of the noisy-free signal
s from index where the noisy coefficients O(x) are larger than the value of the
threshold.

Definition 4. The decay index (DI) which quantifies the removed signal by the
de-noising processing is defined as

DI =
Poriginal

Premaining

(8)

where Poriginal is the power of the noisy-free signal and Premaining the power of
the remaining signal after de-noising processing.

We compare the different principles for two separating algorithms (JADE and
EASI) and for different signal to noise ratios (SNR) for the observed mixtures.
Each simulation run is repeated 50 times, holding all factors constant except the
noise samples. We use the hard shrinkage of the stationary wavelet transform [8]
as de-noising processing.

4.1 Case of a white Gaussian noise

Let us begin with a white Gaussian additive noise:

y(k) = A s(k) + n(k) with n(k)
iid
∼ N (0, Γn) and Γn diagonal. (9)

The table 1 regroups the DI (dB), the SNR (dB) of the denoised mixtures and
the PI (dB) versus the scale used for the wavelet de-noising for a SNR of the
mixtures egals to -5dB. We note that even if the SNR of the de-noised mixtures

Scale 0 1 2 3 4 5 6 7 8 9 10

DI1 0 0,001 0,003 0,005 0,011 0,027 0,360 1,182 1,515 1,788 1,795

DI2 0 0 0,001 0,002 0,004 0,023 0,763 1,541 2,042 2,225 2,244

SNR1 -5,0 -2,0 1,0 4,0 6,7 9,5 10,2 10,1 10,0 10,0 10,1

SNR2 -5,0 -2,0 1,0 3,9 6,8 9,4 10,3 10,1 9,9 9,9 10,0

PIJADE -5 -16 -17 -19 -20 -21 -23 -22 -21 -20 -21
Table 1. Performance for various scales.



is better on scale 6 than on scale 5, the decay index underlines that the removed
signal by the de-noising processing is definitively larger at scale 6 than at scale 5.

The table 2 summarizes the results in order to compare the different meth-
ods. The numbers between brackets represent the scales used for the de-noising
processing pre-separation and post-separation. The performance index PI (dB)
and the SNR (dB) for the two estimated sources are reported versus the SNR

(dB) of the observed mixtures.

SNR -10 -5 0 5 -10 -5 0 5

without denoising
PIJADE 0 -5 -22 -24 SNR1 -9,2 -5,0 -0,3 4,7
PIEASI 1 -2 -15 -24 SNR2 -9,1 -4,5 0,3 5,3

P.S. (6,0)
PIJADE -18 -23 -27 -29 SNR1 5,9 9,9 13,8 17,3
PIEASI -14 -19 -22 -24 SNR2 5,6 10,1 14,8 19,0

Serial P.S.P. (5,6)
PIJADE -17 -21 -23 -24 SNR1 7,4 11,9 15,6 17,8
PIEASI -13 -18 -21 -23 SNR2 7,0 11,6 16,6 21,4

Parallel P.S.P. (6,6)
PIJADE -18 -23 -27 -29 SNR1 8,1 12,5 16,1 18,1
PIEASI -14 -19 -22 -24 SNR2 7,8 11.3 16,4 21,4

Table 2. Performance for a white Gaussian noise.

The denoised principles provide more accurate estimating of the separating
matrix B̂ and improve the quality of the estimated sources. Serial P.S.P. and
Parallel P.S.P. methods have similar performance which is better than the per-
formance obtained with P.S. method.

4.2 Case of a colored Gaussian noise

Now, let study the methods with an additive colored Gaussian noise. The simula-
tions were performed with short time dependence noise, modeled by a 2nd-order
auto-regressive process AR(2):

n(k) = 1.33n(k − 1) − 0.88n(k − 2) + w(k) (10)

with w(k) an iid Gaussian noise. Since the noise n has scale-dependent wavelet
coefficients, we used a scale-dependent threshold.

In this case we only report the PI (dB) and the SNR of the estimated sources
versus the SNR (dB) of the mixtures. The table 3 illustrates the interest of a
post-separation de-noising. As in the case of the white noise case, the principles
Serial P.S.P. and Parallel P.S.P. improve the performances.

5 Conclusion

The noise strongly limits the separation performance, encouraging us to use
wavelet de-noising processing. In this paper, we propose two new principles,
Serial P.S.P. and Parallel P.S.P., which associate wavelet de-noising and blind
source separation. In noisy mixtures, these new principles improve the sepa-
ration performance and give comparable results, but Parallel P.S.P. method is



SNR -10 -5 0 5 -10 -5 0 5

without de-noising
PIJADE 0 -1 -15 -23 SNR1 -9,3 -4,7 -0,3 4,7
PIEASI 0 -2 -12 -21 SNR2 -9 -4,4 0,3 5,3

P.S. (6,0)
PIJADE -10 -22 -24 -24 SNR1 7,2 11,6 16,0 19,0
PIEASI -14 -19 -23 -24 SNR2 7,9 12,8 17,4 21,5

Serial P.S.P. (5,6)
PIJADE -21 -23 -24 -24 SNR1 11,2 14,9 17,6 19,6
PIEASI -18 -20 -23 -24 SNR2 10,6 14,8 20,0 25,0

Parallel P.S.P.
(6,6 or 5)

PIJADE -22 -24 -24 -25 SNR1 11,8 15,3 17,5 19,7
PIEASI -19 -21 -23 -24 SNR2 10,3 14,9 20,0 24,9

Table 3. Performance for colored Gaussian noise.

more robust to a bad pre-separation de-noising with white as well as colored
Gaussian noise. Moreover its implementation is easier since there is no trade-off
for determining the pre-separation scale.

Finaly, we addressed the fetal ECG extraction from sensors located on the
mother’s skin [9]. Preliminary experiments [10], performed with success from
strong noisy signals, confirm the efficacy of these methods.
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