Vous êtes ici : GIPSA-lab > Formation > Thèses soutenues

'Modeling and control of VTOL vehicles with rigid manipulators'


Directeur de thèse :     Nicolas MARCHAND

École doctorale : Electronique, electrotechnique, automatique, traitement du signal (EEATS)

Spécialité : Automatique et productique

Structure de rattachement : Grenoble-INP

Établissement d'origine :

Financement(s) : bourse attribuée par un gouvernement étranger ; Sans financement


Date d'entrée en thèse : 01/11/2013

Date de soutenance : 07/11/2017


Composition du jury :
M. Antonio FRANCHI, Chargé de recherche, LAAS-CNRS, Toulouse, Rapporteur.
M. Arturo ZAVALA-RIO, Chargé de recherche, Instituto Potosino de Investigación Científica y Tecnológica, A.C., S.L.P, Mexique, Rapporteur.
M. Stéphane VIOLLET, Directeur de recherche, ISM-CNRS, Marseille, Examinateur.
M. Edouard LAROCHE, Professeur, ICube - AVR, Strasbourg, Examinateur.
M. Ahmad HABLY, Maître de conférences, GIPSA-Lab-CNRS, Grenoble, Examinateur.
M. Nicolas MARCHAND, Directeur de Recherche, GIPSA-Lab-CNRS, Grenoble, Directeur de thèse.


Résumé : Aerial manipulation has been an active area of research in recent times, mainly because the active tasking of Unmanned Aerial Vehicles (UAVs) increases the employability of these vehicles for various applications. For active tasking one would consider manipulation, grasping and transporting, etc.However, there are many challenges in aerial grasping for these vehicles, like their limited payload or the altered dynamics caused by the addition of payloads or a robot manipulator.
In this context, the present work is centered on the modeling and the asymptotical stabilization of a mini-quadrotor carrying a rigid manipulator arm. For this, a mathematical model which takes into account the coupling between the two systems and makes use of the quaternion parametrization is presented. Then, an attitude nonlinear control law is designed in order to stabilize the aerial vehicle even under the presence of disturbances coming from the movement of the robot maipulator. Finally, the quadcopter is driven to a desired position by the design of another nonlinear control law.
The proof of stability and experimental results validate the proposed method control strategy and allow a comparison of the results when the motion of the arm is taken into account or not.

GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 SAINT MARTIN D'HERES CEDEX - 33 (0)4 76 82 71 31