Vous êtes ici : GIPSA-lab > Formation > Thèses soutenues
PIRET Hlne

Mesure embarquée large bande de l'impédance électrique – application aux batterie

 

Directeur de thèse :     Nadine MARTIN

Encadrant :     Pierre GRANJON

École doctorale : Electronique, electrotechnique, automatique, traitement du signal (EEATS)

Spécialité : Signal, image, parole, télécoms

Structure de rattachement : Autre

Établissement d'origine : Université de Caen

Financement(s) : contrat à durée déterminée

 

Date d'entrée en thèse : 14/10/2013

Date de soutenance : 17/11/2016

 

Composition du jury :
Mme, Corinne, Mailhes, Professeur ENSEEIHT, Rapporteur
M, Christophe, Forgez, Professeur des Universités, Université de Technologie de Compiègne, Rapporteur
M, Daniel, Hissel, Professeur des Universités, Université de Franche Comté, Examinateur
Mme, Nadine, Martin, Directeur de recherche CNRS, Gipsa-lab, Directeur de thèse
M, Pierre, Granjon, Maitre de conférences, Grenoble INP, Gipsa-lab, Co-encadrant
Mme, Viviane, Cattin, Ingénieur de recherche, CEA/Leti, Co-encadrant
M, Nicolas, Guillet, Docteur INES, Invité

 

Résumé : De plus en plus d'applications reposent sur l'utilisation des batteries, que cela soit dans le domaine des transports, du smart grid ou des objets connectés. Par conséquent, l'étude des batteries est devenue une problématique majeure. Une batterie est un système électrochimique complexe qui dépend de nombreux paramètres et dont les performances déclinent avec le temps. Ainsi le développement d'un système de gestion efficient de la batterie (battery management system BMS) pour éviter les dégradations, étendre la durée de vie et optimiser son utilisation est une priorité. Un moyen d'obtenir une représentation intéressante de l'état présent de la batterie est d'estimer son impédance électrochimique. Cette thèse développe des techniques d'identification temps-fréquence de cette impédance, qui peuvent facilement être embarquées dans un véhicule ou un autre appareil. La première méthode développée permet non seulement une estimation précise de l'impédance, mais aussi un suivi de son évolution temporelle contrairement aux techniques classiques de spectroscopie d'impédance électrochimique. Cette méthode basée sur la transformée de Fourier repose sur un moyennage local récursif contrôlé par un seul paramètre. Celui-ci gouverne un compromis entre les performances de l'estimation et celles de la pour- suite. La capacité de cette méthode à estimer l'impédance au cours du temps est d'abord démontrée sur un simulateur, puis sur une batterie Lithium ion, sur laquelle une étude de répétabilité est réalisée, et enfin appliquée pour suivre l'évolution de l'impédance de la batterie d'un drone en cours de vol. La seconde méthode basée sur la transformée en ondelettes est développée afin de répondre à la problématique des phénomènes de longue dépendance telles que les réactions de diffusion limitée qui apparaissent dans les batteries. Des modèles de batteries reposant sur des circuits électriques équivalents incluent souvent des éléments à phase constante (constant phase element CPE) pour prendre en compte ces phénomènes. La méthode basée sur la transformée de Fourier est comparée à celle basée sur le transformée en ondelettes sur un simulateur de CPE grâce à une procédure de Monte Carlo. L'approche par les ondelettes avec son pavage temps-fréquence irrégulier apparaît comme une méthode particulièrement adaptée à ces phénomènes. A partir de l'impédance, quatre différents indicateurs de l'état de la batterie sont ensuite développés. L'estimation de l'état de charge via un filtre de Kalman étendu dans le contexte de l'étude de la batterie du drone pendant un vol est d'abord effectuée. Cette thèse s'intéresse aussi à l'estimation des paramètres du CPE liés aux phénomènes de longue dépendance. Un estimateur de la puissance maximale disponible généralement utilisée dans le secteur des transports est élaboré à partir de la réponse impulsionnelle de la batterie. Afin de prévenir du risque d'emballement thermique l'estimation de l'impédance est utilisée pour connaître l'état thermique de la batterie en estimant sa température interne.


GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 SAINT MARTIN D'HERES CEDEX - 33 (0)4 76 82 71 31